On this page
tf.keras.optimizers.Nadam
Optimizer that implements the NAdam algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Nadam(
    learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07,
    name='Nadam', **kwargs
)
Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum.
| Args | |
|---|---|
| learning_rate | A Tensor or a floating point value. The learning rate. | 
| beta_1 | A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. | 
| beta_2 | A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. | 
| epsilon | A small constant for numerical stability. | 
| name | Optional name for the operations created when applying gradients. Defaults to "Nadam". | 
| **kwargs | Keyword arguments. Allowed to be one of "clipnorm"or"clipvalue"."clipnorm"(float) clips gradients by norm;"clipvalue"(float) clips gradients by value. | 
Reference:
| Raises | |
|---|---|
| ValueError | in case of any invalid argument. | 
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/optimizers/Nadam