On this page
tf.keras.layers.Conv3DTranspose
Transposed convolution layer (sometimes called Deconvolution).
Inherits From: Conv3D
, Layer
, Module
tf.keras.layers.Conv3DTranspose(
filters,
kernel_size,
strides=(1, 1, 1),
padding='valid',
output_padding=None,
data_format=None,
dilation_rate=(1, 1, 1),
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
)
The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
When using this layer as the first layer in a model, provide the keyword argument input_shape
(tuple of integers or None
, does not include the sample axis), e.g. input_shape=(128, 128, 128, 3)
for a 128x128x128 volume with 3 channels if data_format="channels_last"
.
Args | |
---|---|
filters |
Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
kernel_size |
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |
strides |
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
padding |
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
output_padding |
An integer or tuple/list of 3 integers, specifying the amount of padding along the depth, height, and width. Can be a single integer to specify the same value for all spatial dimensions. The amount of output padding along a given dimension must be lower than the stride along that same dimension. If set to None (default), the output shape is inferred. |
data_format |
A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, depth, height, width) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
dilation_rate |
an integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1. |
activation |
Activation function to use. If you don't specify anything, no activation is applied (see keras.activations ). |
use_bias |
Boolean, whether the layer uses a bias vector. |
kernel_initializer |
Initializer for the kernel weights matrix (see keras.initializers ). Defaults to 'glorot_uniform'. |
bias_initializer |
Initializer for the bias vector (see keras.initializers ). Defaults to 'zeros'. |
kernel_regularizer |
Regularizer function applied to the kernel weights matrix (see keras.regularizers ). |
bias_regularizer |
Regularizer function applied to the bias vector (see keras.regularizers ). |
activity_regularizer |
Regularizer function applied to the output of the layer (its "activation") (see keras.regularizers ). |
kernel_constraint |
Constraint function applied to the kernel matrix (see keras.constraints ). |
bias_constraint |
Constraint function applied to the bias vector (see keras.constraints ). |
Input shape:
5D tensor with shape: (batch_size, channels, depth, rows, cols)
if data_format='channels_first' or 5D tensor with shape: (batch_size, depth, rows, cols, channels)
if data_format='channels_last'.
Output shape:
5D tensor with shape: (batch_size, filters, new_depth, new_rows, new_cols)
if data_format='channels_first' or 5D tensor with shape: (batch_size, new_depth, new_rows, new_cols, filters)
if data_format='channels_last'. depth
and rows
and cols
values might have changed due to padding. If output_padding
is specified::
new_depth = ((depth - 1) * strides[0] + kernel_size[0] - 2 * padding[0] +
output_padding[0])
new_rows = ((rows - 1) * strides[1] + kernel_size[1] - 2 * padding[1] +
output_padding[1])
new_cols = ((cols - 1) * strides[2] + kernel_size[2] - 2 * padding[2] +
output_padding[2])
Returns | |
---|---|
A tensor of rank 5 representing activation(conv3dtranspose(inputs, kernel) + bias) . |
Raises | |
---|---|
ValueError |
if padding is "causal". |
ValueError |
when both strides > 1 and dilation_rate > 1. |
References:
Methods
convolution_op
convolution_op(
inputs, kernel
)
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/layers/Conv3DTranspose