On this page
tf.raw_ops.QuantizedReluX
Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tf.raw_ops.QuantizedReluX(
features,
max_value,
min_features,
max_features,
out_type=tf.dtypes.quint8,
name=None
)
Args | |
---|---|
features |
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 . |
max_value |
A Tensor of type float32 . |
min_features |
A Tensor of type float32 . The float value that the lowest quantized value represents. |
max_features |
A Tensor of type float32 . The float value that the highest quantized value represents. |
out_type |
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 . Defaults to tf.quint8 . |
name |
A name for the operation (optional). |
Returns | |
---|---|
A tuple of Tensor objects (activations, min_activations, max_activations). |
|
activations |
A Tensor of type out_type . |
min_activations |
A Tensor of type float32 . |
max_activations |
A Tensor of type float32 . |
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/raw_ops/QuantizedReluX