On this page
tf.raw_ops.QuantizedResizeBilinear
Resize quantized images to size using quantized bilinear interpolation.
tf.raw_ops.QuantizedResizeBilinear(
images,
size,
min,
max,
align_corners=False,
half_pixel_centers=False,
name=None
)
Input images and output images must be quantized types.
| Args | |
|---|---|
images |
A Tensor. Must be one of the following types: quint8, qint32, float32. 4-D with shape [batch, height, width, channels]. |
size |
A 1-D int32 Tensor of 2 elements: new_height, new_width. The new size for the images. |
min |
A Tensor of type float32. |
max |
A Tensor of type float32. |
align_corners |
An optional bool. Defaults to False. If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Defaults to false. |
half_pixel_centers |
An optional bool. Defaults to False. |
name |
A name for the operation (optional). |
| Returns | |
|---|---|
A tuple of Tensor objects (resized_images, out_min, out_max). |
|
resized_images |
A Tensor. Has the same type as images. |
out_min |
A Tensor of type float32. |
out_max |
A Tensor of type float32. |
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/raw_ops/QuantizedResizeBilinear