On this page
tf.raw_ops.ResourceApplyAdadelta
Update '*var' according to the adadelta scheme.
tf.raw_ops.ResourceApplyAdadelta(
var,
accum,
accum_update,
lr,
rho,
epsilon,
grad,
use_locking=False,
name=None
)
accum = rho() * accum + (1 - rho()) * grad.square(); update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var -= update;
Args | |
---|---|
var |
A Tensor of type resource . Should be from a Variable(). |
accum |
A Tensor of type resource . Should be from a Variable(). |
accum_update |
A Tensor of type resource . Should be from a Variable(). |
lr |
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , complex64 , int64 , qint8 , quint8 , qint32 , bfloat16 , uint16 , complex128 , half , uint32 , uint64 . Scaling factor. Must be a scalar. |
rho |
A Tensor . Must have the same type as lr . Decay factor. Must be a scalar. |
epsilon |
A Tensor . Must have the same type as lr . Constant factor. Must be a scalar. |
grad |
A Tensor . Must have the same type as lr . The gradient. |
use_locking |
An optional bool . Defaults to False . If True, updating of the var, accum and update_accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
name |
A name for the operation (optional). |
Returns | |
---|---|
The created Operation. |
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/raw_ops/ResourceApplyAdadelta