On this page
tf.sparse.transpose
Transposes a SparseTensor
tf.sparse.transpose(
sp_input, perm=None, name=None
)
The returned tensor's dimension i will correspond to the input dimension perm[i]
. If perm
is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors.
For example, if sp_input
has shape [4, 5]
and indices
/ values
:
[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c
then the output will be a SparseTensor
of shape [5, 4]
and indices
/ values
:
[0, 2]: c
[1, 0]: a
[1, 3]: d
[3, 0]: b
Args | |
---|---|
sp_input |
The input SparseTensor . |
perm |
A permutation of the dimensions of sp_input . |
name |
A name prefix for the returned tensors (optional) |
Returns | |
---|---|
A transposed SparseTensor . |
Raises | |
---|---|
TypeError |
If sp_input is not a SparseTensor . |
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/sparse/transpose