On this page
tensorflow::ops::Elu
#include <nn_ops.h>
Computes exponential linear: exp(features) - 1
if < 0, features
otherwise.
Summary
See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Arguments:
- scope: A Scope object
Returns:
Output
: The activations tensor.
Constructors and Destructors | |
---|---|
Elu(const ::tensorflow::Scope & scope, ::tensorflow::Input features) |
Public attributes | |
---|---|
activations |
|
operation |
Public functions | |
---|---|
node() const |
::tensorflow::Node *
|
operator::tensorflow::Input() const |
|
operator::tensorflow::Output() const |
Public attributes
activations
::tensorflow::Output activations
operation
Operation operation
Public functions
Elu
Elu(
const ::tensorflow::Scope & scope,
::tensorflow::Input features
)
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/elu