Eigen::LDLT
template<typename _MatrixType, int _UpLo>
class Eigen::LDLT< _MatrixType, _UpLo >
Robust Cholesky decomposition of a matrix with pivoting.
-
Template Parameters
-
_MatrixType |
the type of the matrix of which to compute the LDL^T Cholesky decomposition |
_UpLo |
the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read. |
Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix \( A \) such that \( A = P^TLDL^*P \), where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.
The decomposition uses pivoting to ensure stability, so that D will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.
Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
This class supports the inplace decomposition mechanism.
-
See also
- MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
|
const LDLT & |
adjoint () const |
|
template<typename InputType > |
LDLT< MatrixType, _UpLo > & |
compute (const EigenBase< InputType > &a) |
|
ComputationInfo |
info () const |
|
Reports whether previous computation was successful. More...
|
|
bool |
isNegative (void) const |
|
bool |
isPositive () const |
|
|
LDLT () |
|
Default Constructor. More...
|
|
template<typename InputType > |
|
LDLT (const EigenBase< InputType > &matrix) |
|
Constructor with decomposition. More...
|
|
template<typename InputType > |
|
LDLT (EigenBase< InputType > &matrix) |
|
Constructs a LDLT factorization from a given matrix. More...
|
|
|
LDLT (Index size) |
|
Default Constructor with memory preallocation. More...
|
|
Traits::MatrixL |
matrixL () const |
|
const MatrixType & |
matrixLDLT () const |
|
Traits::MatrixU |
matrixU () const |
|
template<typename Derived > |
LDLT< MatrixType, _UpLo > & |
rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma) |
|
RealScalar |
rcond () const |
|
MatrixType |
reconstructedMatrix () const |
|
void |
setZero () |
|
template<typename Rhs > |
const Solve< LDLT, Rhs > |
solve (const MatrixBase< Rhs > &b) const |
|
const TranspositionType & |
transpositionsP () const |
|
Diagonal< const MatrixType > |
vectorD () const |
|
Public Member Functions inherited from Eigen::SolverBase< LDLT< _MatrixType, _UpLo > > |
AdjointReturnType |
adjoint () const |
|
LDLT< _MatrixType, _UpLo > & |
derived () |
|
const LDLT< _MatrixType, _UpLo > & |
derived () const |
|
const Solve< LDLT< _MatrixType, _UpLo >, Rhs > |
solve (const MatrixBase< Rhs > &b) const |
|
|
SolverBase () |
|
ConstTransposeReturnType |
transpose () const |
|
Public Member Functions inherited from Eigen::EigenBase< Derived > |
EIGEN_CONSTEXPR Index |
cols () const EIGEN_NOEXCEPT |
|
Derived & |
derived () |
|
const Derived & |
derived () const |
|
EIGEN_CONSTEXPR Index |
rows () const EIGEN_NOEXCEPT |
|
EIGEN_CONSTEXPR Index |
size () const EIGEN_NOEXCEPT |
|
LDLT() [1/4]
template<typename _MatrixType , int _UpLo>
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via LDLT::compute(const MatrixType&).
LDLT() [2/4]
template<typename _MatrixType , int _UpLo>
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
-
See also
- LDLT()
LDLT() [3/4]
template<typename _MatrixType , int _UpLo>
template<typename InputType >
Constructor with decomposition.
This calculates the decomposition for the input matrix.
-
See also
- LDLT(Index size)
LDLT() [4/4]
template<typename _MatrixType , int _UpLo>
template<typename InputType >
Constructs a LDLT factorization from a given matrix.
This overloaded constructor is provided for inplace decomposition when MatrixType
is a Eigen::Ref.
-
See also
-
LDLT(const EigenBase&)
adjoint()
template<typename _MatrixType , int _UpLo>
-
Returns
-
the adjoint of
*this
, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
x = decomposition.adjoint().solve(b)
compute()
template<typename _MatrixType , int _UpLo>
template<typename InputType >
Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of matrix
info()
template<typename _MatrixType , int _UpLo>
Reports whether previous computation was successful.
-
Returns
Success
if computation was successful, NumericalIssue
if the factorization failed because of a zero pivot.
isNegative()
template<typename _MatrixType , int _UpLo>
bool Eigen::LDLT< _MatrixType, _UpLo >::isNegative |
( |
void |
|
) |
const |
|
inline |
-
Returns
-
true if the matrix is negative (semidefinite)
isPositive()
template<typename _MatrixType , int _UpLo>
bool Eigen::LDLT< _MatrixType, _UpLo >::isPositive |
( |
|
) |
const |
|
inline |
-
Returns
-
true if the matrix is positive (semidefinite)
matrixL()
template<typename _MatrixType , int _UpLo>
Traits::MatrixL Eigen::LDLT< _MatrixType, _UpLo >::matrixL |
( |
|
) |
const |
|
inline |
-
Returns
-
a view of the lower triangular matrix L
matrixLDLT()
template<typename _MatrixType , int _UpLo>
const MatrixType& Eigen::LDLT< _MatrixType, _UpLo >::matrixLDLT |
( |
|
) |
const |
|
inline |
-
Returns
-
the internal LDLT decomposition matrix
TODO: document the storage layout
matrixU()
template<typename _MatrixType , int _UpLo>
Traits::MatrixU Eigen::LDLT< _MatrixType, _UpLo >::matrixU |
( |
|
) |
const |
|
inline |
-
Returns
-
a view of the upper triangular matrix U
rankUpdate()
template<typename _MatrixType , int _UpLo>
template<typename Derived >
LDLT<MatrixType,_UpLo>& Eigen::LDLT< _MatrixType, _UpLo >::rankUpdate |
( |
const MatrixBase< Derived > & |
w, |
|
|
const typename LDLT< MatrixType, _UpLo >::RealScalar & |
sigma |
|
) |
|
|
Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
-
Parameters
-
w |
a vector to be incorporated into the decomposition. |
sigma |
a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
-
See also
- setZero()
rcond()
template<typename _MatrixType , int _UpLo>
RealScalar Eigen::LDLT< _MatrixType, _UpLo >::rcond |
( |
|
) |
const |
|
inline |
-
Returns
-
an estimate of the reciprocal condition number of the matrix of which
*this
is the LDLT decomposition.
reconstructedMatrix()
template<typename MatrixType , int _UpLo>
MatrixType Eigen::LDLT< MatrixType, _UpLo >::reconstructedMatrix |
-
Returns
-
the matrix represented by the decomposition, i.e., it returns the product: P^T L D L^* P. This function is provided for debug purpose.
setZero()
template<typename _MatrixType , int _UpLo>
Clear any existing decomposition
-
See also
-
rankUpdate(w,sigma)
solve()
template<typename _MatrixType , int _UpLo>
template<typename Rhs >
-
Returns
-
a solution x of \( A x = b \) using the current decomposition of A.
This function also supports in-place solves using the syntax x = decompositionObject.solve(x)
.
This method just tries to find as good a solution as possible. If you want to check whether a solution exists or if it is accurate, just call this function to get a result and then compute the error of this result, or use MatrixBase::isApprox() directly, for instance like this:
bool a_solution_exists = (A*result).isApprox(b, precision);
This method avoids dividing by zero, so that the non-existence of a solution doesn't by itself mean that you'll get inf
or nan
values.
More precisely, this method solves \( A x = b \) using the decomposition \( A = P^T L D L^* P \) by solving the systems \( P^T y_1 = b \), \( L y_2 = y_1 \), \( D y_3 = y_2 \), \( L^* y_4 = y_3 \) and \( P x = y_4 \) in succession. If the matrix \( A \) is singular, then \( D \) will also be singular (all the other matrices are invertible). In that case, the least-square solution of \( D y_3 = y_2 \) is computed. This does not mean that this function computes the least-square solution of \( A x = b \) if \( A \) is singular.
-
See also
- MatrixBase::ldlt(), SelfAdjointView::ldlt()
transpositionsP()
template<typename _MatrixType , int _UpLo>
-
Returns
-
the permutation matrix P as a transposition sequence.
vectorD()
template<typename _MatrixType , int _UpLo>
-
Returns
-
the coefficients of the diagonal matrix D
The documentation for this class was generated from the following file: