Aggregation Pipeline Optimization

Aggregation pipeline operations have an optimization phase which attempts to reshape the pipeline for improved performance.

To see how the optimizer transforms a particular aggregation pipeline, include the explain option in the db.collection.aggregate() method.

Optimizations are subject to change between releases.

Projection Optimization

The aggregation pipeline can determine if it requires only a subset of the fields in the documents to obtain the results. If so, the pipeline will only use those required fields, reducing the amount of data passing through the pipeline.

Pipeline Sequence Optimization

$project or $addFields + $match Sequence Optimization

For an aggregation pipeline that contains a projection stage ($project or $addFields) followed by a $match stage, MongoDB moves any filters in the $match stage that do not require values computed in the projection stage to a new $match stage before the projection.

If an aggregation pipeline contains multiple projection and/or $match stages, MongoDB performs this optimization for each $match stage, moving each $match filter before all projection stages that the filter does not depend on.

Consider a pipeline of the following stages:

{ $addFields: {
    maxTime: { $max: "$times" },
    minTime: { $min: "$times" }
} },
{ $project: {
    _id: 1, name: 1, times: 1, maxTime: 1, minTime: 1,
    avgTime: { $avg: ["$maxTime", "$minTime"] }
} },
{ $match: {
    name: "Joe Schmoe",
    maxTime: { $lt: 20 },
    minTime: { $gt: 5 },
    avgTime: { $gt: 7 }
} }

The optimizer breaks up the $match stage into four individual filters, one for each key in the $match query document. The optimizer then moves each filter before as many projection stages as possible, creating new $match stages as needed. Given this example, the optimizer produces the following optimized pipeline:

{ $match: { name: "Joe Schmoe" } },
{ $addFields: {
    maxTime: { $max: "$times" },
    minTime: { $min: "$times" }
} },
{ $match: { maxTime: { $lt: 20 }, minTime: { $gt: 5 } } },
{ $project: {
    _id: 1, name: 1, times: 1, maxTime: 1, minTime: 1,
    avgTime: { $avg: ["$maxTime", "$minTime"] }
} },
{ $match: { avgTime: { $gt: 7 } } }

The $match filter { avgTime: { $gt: 7 } } depends on the $project stage to compute the avgTime field. The $project stage is the last projection stage in this pipeline, so the $match filter on avgTime could not be moved.

The maxTime and minTime fields are computed in the $addFields stage but have no dependency on the $project stage. The optimizer created a new $match stage for the filters on these fields and placed it before the $project stage.

The $match filter { name: "Joe Schmoe" } does not use any values computed in either the $project or $addFields stages so it was moved to a new $match stage before both of the projection stages.

Note

After optimization, the filter { name: "Joe Schmoe" } is in a $match stage at the beginning of the pipeline. This has the added benefit of allowing the aggregation to use an index on the name field when initially querying the collection. See Pipeline Operators and Indexes for more information.

$sort + $match Sequence Optimization

When you have a sequence with $sort followed by a $match, the $match moves before the $sort to minimize the number of objects to sort. For example, if the pipeline consists of the following stages:

{ $sort: { age : -1 } },
{ $match: { status: 'A' } }

During the optimization phase, the optimizer transforms the sequence to the following:

{ $match: { status: 'A' } },
{ $sort: { age : -1 } }

$redact + $match Sequence Optimization

When possible, when the pipeline has the $redact stage immediately followed by the $match stage, the aggregation can sometimes add a portion of the $match stage before the $redact stage. If the added $match stage is at the start of a pipeline, the aggregation can use an index as well as query the collection to limit the number of documents that enter the pipeline. See Pipeline Operators and Indexes for more information.

For example, if the pipeline consists of the following stages:

{ $redact: { $cond: { if: { $eq: [ "$level", 5 ] }, then: "$$PRUNE", else: "$$DESCEND" } } },
{ $match: { year: 2014, category: { $ne: "Z" } } }

The optimizer can add the same $match stage before the $redact stage:

{ $match: { year: 2014 } },
{ $redact: { $cond: { if: { $eq: [ "$level", 5 ] }, then: "$$PRUNE", else: "$$DESCEND" } } },
{ $match: