On this page
numpy.in1d
numpy.in1d(ar1, ar2, assume_unique=False, invert=False)[source]- 
    
Test whether each element of a 1-D array is also present in a second array.
Returns a boolean array the same length as
ar1that is True where an element ofar1is inar2and False otherwise.We recommend using
isininstead ofin1dfor new code.- Parameters
 - 
      
ar1(M,) array_like- 
        
Input array.
 ar2array_like- 
        
The values against which to test each value of
ar1. assume_uniquebool, optional- 
        
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.
 invertbool, optional- 
        
If True, the values in the returned array are inverted (that is, False where an element of
ar1is inar2and True otherwise). Default is False.np.in1d(a, b, invert=True)is equivalent to (but is faster than)np.invert(in1d(a, b)).New in version 1.8.0.
 
 - Returns
 - 
      
in1d(M,) ndarray, bool- 
        
The values
ar1[in1d]are inar2. 
 
See also
isin- 
       
Version of this function that preserves the shape of ar1.
 numpy.lib.arraysetops- 
       
Module with a number of other functions for performing set operations on arrays.
 
Notes
in1dcan be considered as an element-wise function version of the python keywordin, for 1-D sequences.in1d(a, b)is roughly equivalent tonp.array([item in b for item in a]). However, this idea fails ifar2is a set, or similar (non-sequence) container: Asar2is converted to an array, in those casesasarray(ar2)is an object array rather than the expected array of contained values.New in version 1.4.0.
Examples
>>> test = np.array([0, 1, 2, 5, 0]) >>> states = [0, 2] >>> mask = np.in1d(test, states) >>> mask array([ True, False, True, False, True]) >>> test[mask] array([0, 2, 0]) >>> mask = np.in1d(test, states, invert=True) >>> mask array([False, True, False, True, False]) >>> test[mask] array([1, 5]) 
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.20/reference/generated/numpy.in1d.html