On this page
numpy.isin
numpy.isin(element, test_elements, assume_unique=False, invert=False)[source]- 
    
Calculates
element in test_elements, broadcasting overelementonly. Returns a boolean array of the same shape aselementthat is True where an element ofelementis intest_elementsand False otherwise.- Parameters
 - 
      
elementarray_like- 
        
Input array.
 test_elementsarray_like- 
        
The values against which to test each value of
element. This argument is flattened if it is an array or array_like. See notes for behavior with non-array-like parameters. assume_uniquebool, optional- 
        
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.
 invertbool, optional- 
        
If True, the values in the returned array are inverted, as if calculating
element not in test_elements. Default is False.np.isin(a, b, invert=True)is equivalent to (but faster than)np.invert(np.isin(a, b)). 
 - Returns
 - 
      
isinndarray, bool- 
        
Has the same shape as
element. The valueselement[isin]are intest_elements. 
 
See also
in1d- 
       
Flattened version of this function.
 numpy.lib.arraysetops- 
       
Module with a number of other functions for performing set operations on arrays.
 
Notes
isinis an element-wise function version of the python keywordin.isin(a, b)is roughly equivalent tonp.array([item in b for item in a])ifaandbare 1-D sequences.elementandtest_elementsare converted to arrays if they are not already. Iftest_elementsis a set (or other non-sequence collection) it will be converted to an object array with one element, rather than an array of the values contained intest_elements. This is a consequence of thearrayconstructor’s way of handling non-sequence collections. Converting the set to a list usually gives the desired behavior.New in version 1.13.0.
Examples
>>> element = 2*np.arange(4).reshape((2, 2)) >>> element array([[0, 2], [4, 6]]) >>> test_elements = [1, 2, 4, 8] >>> mask = np.isin(element, test_elements) >>> mask array([[False, True], [ True, False]]) >>> element[mask] array([2, 4])The indices of the matched values can be obtained with
nonzero:>>> np.nonzero(mask) (array([0, 1]), array([1, 0]))The test can also be inverted:
>>> mask = np.isin(element, test_elements, invert=True) >>> mask array([[ True, False], [False, True]]) >>> element[mask] array([0, 6])Because of how
arrayhandles sets, the following does not work as expected:>>> test_set = {1, 2, 4, 8} >>> np.isin(element, test_set) array([[False, False], [False, False]])Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set)) array([[False, True], [ True, False]]) 
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.20/reference/generated/numpy.isin.html