On this page
Primitive Type f64
A 64-bit floating point type (specifically, the “binary64” type defined in IEEE 754-2008).
This type is very similar to f32, but has increased precision by using twice as many bits. Please see the documentation for f32 or Wikipedia on double precision values for more information.
See also the std::f64::consts module.
Implementations
impl f64
    pub fn floor(self) -> f64
     Returns the largest integer less than or equal to self.
Examples
let f = 3.7_f64;
let g = 3.0_f64;
let h = -3.7_f64;
assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);
assert_eq!(h.floor(), -4.0);
     pub fn ceil(self) -> f64
     Returns the smallest integer greater than or equal to self.
Examples
let f = 3.01_f64;
let g = 4.0_f64;
assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);
     pub fn round(self) -> f64
     Returns the nearest integer to self. If a value is half-way between two integers, round away from 0.0.
Examples
let f = 3.3_f64;
let g = -3.3_f64;
let h = -3.7_f64;
let i = 3.5_f64;
let j = 4.5_f64;
assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);
assert_eq!(h.round(), -4.0);
assert_eq!(i.round(), 4.0);
assert_eq!(j.round(), 5.0);
     pub fn round_ties_even(self) -> f64
     round_ties_even #96710)
      Returns the nearest integer to a number. Rounds half-way cases to the number with an even least significant digit.
Examples
#![feature(round_ties_even)]
let f = 3.3_f64;
let g = -3.3_f64;
let h = 3.5_f64;
let i = 4.5_f64;
assert_eq!(f.round_ties_even(), 3.0);
assert_eq!(g.round_ties_even(), -3.0);
assert_eq!(h.round_ties_even(), 4.0);
assert_eq!(i.round_ties_even(), 4.0);
     pub fn trunc(self) -> f64
     Returns the integer part of self. This means that non-integer numbers are always truncated towards zero.
Examples
let f = 3.7_f64;
let g = 3.0_f64;
let h = -3.7_f64;
assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), 3.0);
assert_eq!(h.trunc(), -3.0);
     pub fn fract(self) -> f64
     Returns the fractional part of self.
Examples
let x = 3.6_f64;
let y = -3.6_f64;
let abs_difference_x = (x.fract() - 0.6).abs();
let abs_difference_y = (y.fract() - (-0.6)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
     pub fn abs(self) -> f64
     Computes the absolute value of self.
Examples
let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
assert!(f64::NAN.abs().is_nan());
     pub fn signum(self) -> f64
     Returns a number that represents the sign of self.
1.0if the number is positive,+0.0orINFINITY-1.0if the number is negative,-0.0orNEG_INFINITY- NaN if the number is NaN
 
Examples
let f = 3.5_f64;
assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
assert!(f64::NAN.signum().is_nan());
     pub fn copysign(self, sign: f64) -> f64
     Returns a number composed of the magnitude of self and the sign of sign.
Equal to self if the sign of self and sign are the same, otherwise equal to -self. If self is a NaN, then a NaN with the sign bit of sign is returned. Note, however, that conserving the sign bit on NaN across arithmetical operations is not generally guaranteed. See explanation of NaN as a special value for more info.
Examples
let f = 3.5_f64;
assert_eq!(f.copysign(0.42), 3.5_f64);
assert_eq!(f.copysign(-0.42), -3.5_f64);
assert_eq!((-f).copysign(0.42), 3.5_f64);
assert_eq!((-f).copysign(-0.42), -3.5_f64);
assert!(f64::NAN.copysign(1.0).is_nan());
     pub fn mul_add(self, a: f64, b: f64) -> f64
     Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a more accurate result than an unfused multiply-add.
Using mul_add may be more performant than an unfused multiply-add if the target architecture has a dedicated fma CPU instruction. However, this is not always true, and will be heavily dependant on designing algorithms with specific target hardware in mind.
Examples
let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;
// 100.0
let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
assert!(abs_difference < 1e-10);
     pub fn div_euclid(self, rhs: f64) -> f64
     Calculates Euclidean division, the matching method for rem_euclid.
This computes the integer n such that self = n * rhs + self.rem_euclid(rhs). In other words, the result is self / rhs rounded to the integer n such that self >= n * rhs.
Examples
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
     pub fn rem_euclid(self, rhs: f64) -> f64
     Calculates the least nonnegative remainder of self (mod rhs).
In particular, the return value r satisfies 0.0 <= r < rhs.abs() in most cases. However, due to a floating point round-off error it can result in r == rhs.abs(), violating the mathematical definition, if self is much smaller than rhs.abs() in magnitude and self < 0.0. This result is not an element of the function’s codomain, but it is the closest floating point number in the real numbers and thus fulfills the property self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs) approximately.
Examples
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.rem_euclid(b), 3.0);
assert_eq!((-a).rem_euclid(b), 1.0);
assert_eq!(a.rem_euclid(-b), 3.0);
assert_eq!((-a).rem_euclid(-b), 1.0);
// limitation due to round-off error
assert!((-f64::EPSILON).rem_euclid(3.0) != 0.0);
     pub fn powi(self, n: i32) -> f64
     Raises a number to an integer power.
Using this function is generally faster than using powf. It might have a different sequence of rounding operations than powf, so the results are not guaranteed to agree.
Examples
let x = 2.0_f64;
let abs_difference = (x.powi(2) - (x * x)).abs();
assert!(abs_difference < 1e-10);
     pub fn powf(self, n: f64) -> f64
     Raises a number to a floating point power.
Examples
let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - (x * x)).abs();
assert!(abs_difference < 1e-10);
     pub fn sqrt(self) -> f64
     Returns the square root of a number.
Returns NaN if self is a negative number other than -0.0.
Examples
let positive = 4.0_f64;
let negative = -4.0_f64;
let negative_zero = -0.0_f64;
let abs_difference = (positive.sqrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());
assert!(negative_zero.sqrt() == negative_zero);
     pub fn exp(self) -> f64
     Returns e^(self), (the exponential function).
Examples
let one = 1.0_f64;
// e^1
let e = one.exp();
// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();
assert!(abs_difference < 1e-10);
     pub fn exp2(self) -> f64
     Returns 2^(self).
Examples
let f = 2.0_f64;
// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();
assert!(abs_difference < 1e-10);
     pub fn ln(self) -> f64
     Returns the natural logarithm of the number.
Examples
let one = 1.0_f64;
// e^1
let e = one.exp();
// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();
assert!(abs_difference < 1e-10);
     pub fn log(self, base: f64) -> f64
     Returns the logarithm of the number with respect to an arbitrary base.
The result might not be correctly rounded owing to implementation details; self.log2() can produce more accurate results for base 2, and self.log10() can produce more accurate results for base 10.
Examples
let twenty_five = 25.0_f64;
// log5(25) - 2 == 0
let abs_difference = (twenty_five.log(5.0) - 2.0).abs();
assert!(abs_difference < 1e-10);
     pub fn log2(self) -> f64
     Returns the base 2 logarithm of the number.
Examples
let four = 4.0_f64;
// log2(4) - 2 == 0
let abs_difference = (four.log2() - 2.0).abs();
assert!(abs_difference < 1e-10);
     pub fn log10(self) -> f64
     Returns the base 10 logarithm of the number.
Examples
let hundred = 100.0_f64;
// log10(100) - 2 == 0
let abs_difference = (hundred.log10() - 2.0).abs();
assert!(abs_difference < 1e-10);
     pub fn abs_sub(self, other: f64) -> f64
     (self - other).abs(): this operation is (self - other).max(0.0) except that abs_sub also propagates NaNs (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
      The positive difference of two numbers.
- If 
self <= other:0.0 - Else: 
self - other 
Examples
let x = 3.0_f64;
let y = -3.0_f64;
let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
     pub fn cbrt(self) -> f64
     Returns the cube root of a number.
Examples
let x = 8.0_f64;
// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
     pub fn hypot(self, other: f64) -> f64
     Compute the distance between the origin and a point (x, y) on the Euclidean plane. Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length x.abs() and y.abs().
Examples
let x = 2.0_f64;
let y = 3.0_f64;
// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
assert!(abs_difference < 1e-10);
     pub fn sin(self) -> f64
     Computes the sine of a number (in radians).
Examples
let x = std::f64::consts::FRAC_PI_2;
let abs_difference = (x.sin() - 1.0).abs();
assert!(abs_difference < 1e-10);
     pub fn cos(self) -> f64
     Computes the cosine of a number (in radians).
Examples
let x = 2.0 * std::f64::consts::PI;
let abs_difference = (x.cos() - 1.0).abs();
assert!(abs_difference < 1e-10);
     pub fn tan(self) -> f64
     Computes the tangent of a number (in radians).
Examples
let x = std::f64::consts::FRAC_PI_4;
let abs_difference = (x.tan() - 1.0).abs();
assert!(abs_difference < 1e-14);
     pub fn asin(self) -> f64
     Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
Examples
let f = std::f64::consts::FRAC_PI_2;
// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - std::f64::consts::FRAC_PI_2).abs();
assert!(abs_difference < 1e-10);
     pub fn acos(self) -> f64
     Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
Examples
let f = std::f64::consts::FRAC_PI_4;
// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - std::f64::consts::FRAC_PI_4).abs();
assert!(abs_difference < 1e-10);
     pub fn atan(self) -> f64
     Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
Examples
let f = 1.0_f64;
// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();
assert!(abs_difference < 1e-10);
     pub fn atan2(self, other: f64) -> f64
     Computes the four quadrant arctangent of self (y) and other (x) in radians.
x = 0,y = 0:0x >= 0:arctan(y/x)->[-pi/2, pi/2]y >= 0:arctan(y/x) + pi->(pi/2, pi]y < 0:arctan(y/x) - pi->(-pi, -pi/2)
Examples
// Positive angles measured counter-clockwise
// from positive x axis
// -pi/4 radians (45 deg clockwise)
let x1 = 3.0_f64;
let y1 = -3.0_f64;
// 3pi/4 radians (135 deg counter-clockwise)
let x2 = -3.0_f64;
let y2 = 3.0_f64;
let abs_difference_1 = (y1.atan2(x1) - (-std::f64::consts::FRAC_PI_4)).abs();
let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs();
assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
     pub fn sin_cos(self) -> (f64, f64)
     Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).
Examples
let x = std::f64::consts::FRAC_PI_4;
let f = x.sin_cos();
let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();
assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);
     pub fn exp_m1(self) -> f64
     Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.
Examples
let x = 1e-16_f64;
// for very small x, e^x is approximately 1 + x + x^2 / 2
let approx = x + x * x / 2.0;
let abs_difference = (x.exp_m1() - approx).abs();
assert!(abs_difference < 1e-20);
     pub fn ln_1p(self) -> f64
     Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.
Examples
let x = 1e-16_f64;
// for very small x, ln(1 + x) is approximately x - x^2 / 2
let approx = x - x * x / 2.0;
let abs_difference = (x.ln_1p() - approx).abs();
assert!(abs_difference < 1e-20);
     pub fn sinh(self) -> f64
     Hyperbolic sine function.
Examples
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = ((e * e) - 1.0) / (2.0 * e);
let abs_difference = (f - g).abs();
assert!(abs_difference < 1e-10);
     pub fn cosh(self) -> f64
     Hyperbolic cosine function.
Examples
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = ((e * e) + 1.0) / (2.0 * e);
let abs_difference = (f - g).abs();
// Same result
assert!(abs_difference < 1.0e-10);
     pub fn tanh(self) -> f64
     Hyperbolic tangent function.
Examples
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
let abs_difference = (f - g).abs();
assert!(abs_difference < 1.0e-10);
     pub fn asinh(self) -> f64
     Inverse hyperbolic sine function.
Examples
let x = 1.0_f64;
let f = x.sinh().asinh();
let abs_difference = (f - x).abs();
assert!(abs_difference < 1.0e-10);
     pub fn acosh(self) -> f64
     Inverse hyperbolic cosine function.
Examples
let x = 1.0_f64;
let f = x.cosh().acosh();
let abs_difference = (f - x).abs();
assert!(abs_difference < 1.0e-10);
     pub fn atanh(self) -> f64
     Inverse hyperbolic tangent function.
Examples
let e = std::f64::consts::E;
let f = e.tanh().atanh();
let abs_difference = (f - e).abs();
assert!(abs_difference < 1.0e-10);
     pub fn gamma(self) -> f64
     float_gamma #99842)
      Gamma function.
Examples
#![feature(float_gamma)]
let x = 5.0f64;
let abs_difference = (x.gamma() - 24.0).abs();
assert!(abs_difference <= f64::EPSILON);
     pub fn ln_gamma(self) -> (f64, i32)
     float_gamma #99842)
      Natural logarithm of the absolute value of the gamma function
The integer part of the tuple indicates the sign of the gamma function.
Examples
#![feature(float_gamma)]
let x = 2.0f64;
let abs_difference = (x.ln_gamma().0 - 0.0).abs();
assert!(abs_difference <= f64::EPSILON);
     impl f64
    pub const RADIX: u32 = 2u32
     The radix or base of the internal representation of f64.
pub const MANTISSA_DIGITS: u32 = 53u32
     Number of significant digits in base 2.
pub const DIGITS: u32 = 15u32
     Approximate number of significant digits in base 10.
This is the maximum x such that any decimal number with x significant digits can be converted to f64 and back without loss.
Equal to floor(log10 2MANTISSA_DIGITS − 1).
pub const EPSILON: f64 = 2.2204460492503131E-16f64
     Machine epsilon value for f64.
This is the difference between 1.0 and the next larger representable number.
Equal to 21 − MANTISSA_DIGITS.
pub const MIN: f64 = -1.7976931348623157E+308f64
     Smallest finite f64 value.
Equal to −MAX.
pub const MIN_POSITIVE: f64 = 2.2250738585072014E-308f64
     Smallest positive normal f64 value.
Equal to 2MIN_EXP − 1.
pub const MAX: f64 = 1.7976931348623157E+308f64
     Largest finite f64 value.
Equal to (1 − 2−MANTISSA_DIGITS) 2MAX_EXP.
pub const MIN_EXP: i32 = -1_021i32
     One greater than the minimum possible normal power of 2 exponent.
If x = MIN_EXP, then normal numbers ≥ 0.5 × 2x.
pub const MAX_EXP: i32 = 1_024i32
     Maximum possible power of 2 exponent.
If x = MAX_EXP, then normal numbers < 1 × 2x.
pub const MIN_10_EXP: i32 = -307i32
     Minimum x for which 10x is normal.
Equal to ceil(log10 MIN_POSITIVE).
pub const MAX_10_EXP: i32 = 308i32
     Maximum x for which 10x is normal.
Equal to floor(log10 MAX).
pub const NAN: f64 = NaNf64
     Not a Number (NaN).
Note that IEEE 754 doesn’t define just a single NaN value; a plethora of bit patterns are considered to be NaN. Furthermore, the standard makes a difference between a “signaling” and a “quiet” NaN, and allows inspecting its “payload” (the unspecified bits in the bit pattern). This constant isn’t guaranteed to equal to any specific NaN bitpattern, and the stability of its representation over Rust versions and target platforms isn’t guaranteed.
pub const INFINITY: f64 = +Inff64
     Infinity (∞).
pub const NEG_INFINITY: f64 = -Inff64
     Negative infinity (−∞).
pub fn is_nan(self) -> bool
     Returns true if this value is NaN.
let nan = f64::NAN;
let f = 7.0_f64;
assert!(nan.is_nan());
assert!(!f.is_nan());
     pub fn is_infinite(self) -> bool
     Returns true if this value is positive infinity or negative infinity, and false otherwise.
let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
     pub fn is_finite(self) -> bool
     Returns true if this number is neither infinite nor NaN.
let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
     pub fn is_subnormal(self) -> bool
     Returns true if the number is subnormal.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;
assert!(!min.is_subnormal());
assert!(!max.is_subnormal());
assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
// Values between `0` and `min` are Subnormal.
assert!(lower_than_min.is_subnormal());
     pub fn is_normal(self) -> bool
     Returns true if the number is neither zero, infinite, subnormal, or NaN.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
     pub fn classify(self) -> FpCategory
     Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory;
let num = 12.4_f64;
let inf = f64::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
     pub fn is_sign_positive(self) -> bool
     Returns true if self has a positive sign, including +0.0, NaNs with positive sign bit and positive infinity. Note that IEEE 754 doesn’t assign any meaning to the sign bit in case of a NaN, and as Rust doesn’t guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the result of is_sign_positive on a NaN might produce an unexpected result in some cases. See explanation of NaN as a special value for more info.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
     pub fn is_sign_negative(self) -> bool
     Returns true if self has a negative sign, including -0.0, NaNs with negative sign bit and negative infinity. Note that IEEE 754 doesn’t assign any meaning to the sign bit in case of a NaN, and as Rust doesn’t guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the result of is_sign_negative on a NaN might produce an unexpected result in some cases. See explanation of NaN as a special value for more info.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
     pub fn next_up(self) -> f64
     float_next_up_down #91399)
      Returns the least number greater than self.
Let TINY be the smallest representable positive f64. Then,
- if 
self.is_nan(), this returnsself; - if 
selfisNEG_INFINITY, this returnsMIN; - if 
selfis-TINY, this returns -0.0; - if 
selfis -0.0 or +0.0, this returnsTINY; - if 
selfisMAXorINFINITY, this returnsINFINITY; - otherwise the unique least value greater than 
selfis returned. 
The identity x.next_up() == -(-x).next_down() holds for all non-NaN x. When x is finite x == x.next_up().next_down() also holds.
#![feature(float_next_up_down)]
// f64::EPSILON is the difference between 1.0 and the next number up.
assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
// But not for most numbers.
assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
     pub fn next_down(self) -> f64
     float_next_up_down #91399)
      Returns the greatest number less than self.
Let TINY be the smallest representable positive f64. Then,
- if 
self.is_nan(), this returnsself; - if 
selfisINFINITY, this returnsMAX; - if 
selfisTINY, this returns 0.0; - if 
selfis -0.0 or +0.0, this returns-TINY; - if 
selfisMINorNEG_INFINITY, this returnsNEG_INFINITY; - otherwise the unique greatest value less than 
selfis returned. 
The identity x.next_down() == -(-x).next_up() holds for all non-NaN x. When x is finite x == x.next_down().next_up() also holds.
#![feature(float_next_up_down)]
let x = 1.0f64;
// Clamp value into range [0, 1).
let clamped = x.clamp(0.0, 1.0f64.next_down());
assert!(clamped < 1.0);
assert_eq!(clamped.next_up(), 1.0);
     pub fn recip(self) -> f64
     Takes the reciprocal (inverse) of a number, 1/x.
let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0 / x)).abs();
assert!(abs_difference < 1e-10);
     pub fn to_degrees(self) -> f64
     Converts radians to degrees.
let angle = std::f64::consts::PI;
let abs_difference = (angle.to_degrees() - 180.0).abs();
assert!(abs_difference < 1e-10);
     pub fn to_radians(self) -> f64
     Converts degrees to radians.
let angle = 180.0_f64;
let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
assert!(abs_difference < 1e-10);
     pub fn max(self, other: f64) -> f64
     Returns the maximum of the two numbers, ignoring NaN.
If one of the arguments is NaN, then the other argument is returned. This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; this function handles all NaNs the same way and avoids maxNum’s problems with associativity. This also matches the behavior of libm’s fmax.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.max(y), y);
     pub fn min(self, other: f64) -> f64
     Returns the minimum of the two numbers, ignoring NaN.
If one of the arguments is NaN, then the other argument is returned. This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; this function handles all NaNs the same way and avoids minNum’s problems with associativity. This also matches the behavior of libm’s fmin.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.min(y), x);
     pub fn maximum(self, other: f64) -> f64
     float_minimum_maximum #91079)
      Returns the maximum of the two numbers, propagating NaN.
This returns NaN when either argument is NaN, as opposed to f64::max which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.maximum(y), y);
assert!(x.maximum(f64::NAN).is_nan());
     If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
Also note that “propagation” of NaNs here doesn’t necessarily mean that the bitpattern of a NaN operand is conserved; see explanation of NaN as a special value for more info.
pub fn minimum(self, other: f64) -> f64
     float_minimum_maximum #91079)
      Returns the minimum of the two numbers, propagating NaN.
This returns NaN when either argument is NaN, as opposed to f64::min which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.minimum(y), x);
assert!(x.minimum(f64::NAN).is_nan());
     If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
Also note that “propagation” of NaNs here doesn’t necessarily mean that the bitpattern of a NaN operand is conserved; see explanation of NaN as a special value for more info.
pub fn midpoint(self, other: f64) -> f64
     num_midpoint #110840)
      Calculates the middle point of self and rhs.
This returns NaN when either argument is NaN or if a combination of +inf and -inf is provided as arguments.
Examples
#![feature(num_midpoint)]
assert_eq!(1f64.midpoint(4.0), 2.5);
assert_eq!((-5.5f64).midpoint(8.0), 1.25);
     pub unsafe fn to_int_unchecked<Int>(self) -> Int
where
    f64: FloatToInt<Int>,
     Rounds toward zero and converts to any primitive integer type, assuming that the value is finite and fits in that type.
let value = 4.6_f64;
let rounded = unsafe { value.to_int_unchecked::<u16>() };
assert_eq!(rounded, 4);
let value = -128.9_f64;
let rounded = unsafe { value.to_int_unchecked::<i8>() };
assert_eq!(rounded, i8::MIN);
     Safety
The value must:
- Not be 
NaN - Not be infinite
 - Be representable in the return type 
Int, after truncating off its fractional part 
pub fn to_bits(self) -> u64
     Raw transmutation to u64.
This is currently identical to transmute::<f64, u64>(self) on all platforms.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Note that this function is distinct from as casting, which attempts to preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
     pub fn from_bits(v: u64) -> f64
     Raw transmutation from u64.
This is currently identical to transmute::<u64, f64>(v) on all platforms. It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
 - IEEE 754 very precisely specifies the bit layout of floats.
 
However there is one caveat: prior to the 2008 version of IEEE 754, how to interpret the NaN signaling bit wasn’t actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn’t (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favors preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn’t NaN, then there is no portability concern.
If you don’t care about signaling-ness (very likely), then there is no portability concern.
Note that this function is distinct from as casting, which attempts to preserve the numeric value, and not the bitwise value.
Examples
let v = f64::from_bits(0x4029000000000000);
assert_eq!(v, 12.5);
     pub fn to_be_bytes(self) -> [u8; 8]
     Return the memory representation of this floating point number as a byte array in big-endian (network) byte order.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_be_bytes();
assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
     pub fn to_le_bytes(self) -> [u8; 8]
     Return the memory representation of this floating point number as a byte array in little-endian byte order.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_le_bytes();
assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
     pub fn to_ne_bytes(self) -> [u8; 8]
     Return the memory representation of this floating point number as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should use to_be_bytes or to_le_bytes, as appropriate, instead.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_ne_bytes();
assert_eq!(
    bytes,
    if cfg!(target_endian = "big") {
        [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
    } else {
        [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
    }
);
     pub fn from_be_bytes(bytes: [u8; 8]) -> f64
     Create a floating point value from its representation as a byte array in big endian.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Examples
let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
assert_eq!(value, 12.5);
     pub fn from_le_bytes(bytes: [u8; 8]) -> f64
     Create a floating point value from its representation as a byte array in little endian.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Examples
let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
assert_eq!(value, 12.5);
     pub fn from_ne_bytes(bytes: [u8; 8]) -> f64
     Create a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code likely wants to use from_be_bytes or from_le_bytes, as appropriate instead.
See from_bits for some discussion of the portability of this operation (there are almost no issues).
Examples
let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
    [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
    [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
});
assert_eq!(value, 12.5);
     pub fn total_cmp(&self, other: &f64) -> Ordering
     Return the ordering between self and other.
Unlike the standard partial comparison between floating point numbers, this comparison always produces an ordering in accordance to the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
 - negative signaling NaN
 - negative infinity
 - negative numbers
 - negative subnormal numbers
 - negative zero
 - positive zero
 - positive subnormal numbers
 - positive numbers
 - positive infinity
 - positive signaling NaN
 - positive quiet NaN.
 
The ordering established by this function does not always agree with the PartialOrd and PartialEq implementations of f64. For example, they consider negative and positive zero equal, while total_cmp doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
Example
struct GoodBoy {
    name: String,
    weight: f64,
}
let mut bois = vec![
    GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
    GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
    GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
    GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
    GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
    GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];
bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
     pub fn clamp(self, min: f64, max: f64) -> f64
     Restrict a value to a certain interval unless it is NaN.
Returns max if self is greater than max, and min if self is less than min. Otherwise this returns self.
Note that this function returns NaN if the initial value was NaN as well.
Panics
Panics if min > max, min is NaN, or max is NaN.
Examples
assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
     Trait Implementations
impl Add<&f64> for &f64
    type Output = <f64 as Add>::Output
     + operator.
    fn add(self, other: &f64) -> <f64 as Add>::Output
     + operation. Read more
    impl Add<&f64> for f64
    type Output = <f64 as Add>::Output
     + operator.
    fn add(self, other: &f64) -> <f64 as Add>::Output
     + operation. Read more
    impl<'a> Add<f64> for &'a f64
    type Output = <f64 as Add>::Output
     + operator.
    fn add(self, other: f64) -> <f64 as Add>::Output
     + operation. Read more
    impl Add for f64
    type Output = f64
     + operator.
    fn add(self, other: f64) -> f64
     + operation. Read more
    impl AddAssign<&f64> for f64
    impl AddAssign for f64
    impl Clone for f64
    fn clone(&self) -> f64
     fn clone_from(&mut self, source: &Self)
     source. Read more
    impl Debug for f64
    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
     impl Default for f64
    fn default() -> f64
     Returns the default value of 0.0
impl Display for f64
    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
     impl Div<&f64> for &f64
    type Output = <f64 as Div>::Output
     / operator.
    fn div(self, other: &f64) -> <f64 as Div>::Output
     / operation. Read more
    impl Div<&f64> for f64
    type Output = <f64 as Div>::Output
     / operator.
    fn div(self, other: &f64) -> <f64 as Div>::Output
     / operation. Read more
    impl<'a> Div<f64> for &'a f64
    type Output = <f64 as Div>::Output
     / operator.
    fn div(self, other: f64) -> <f64 as Div>::Output
     / operation. Read more
    impl Div for f64
    type Output = f64
     / operator.
    fn div(self, other: f64) -> f64
     / operation. Read more
    impl DivAssign<&f64> for f64
    impl DivAssign for f64
    impl From<bool> for f64
    fn from(small: bool) -> f64
     Converts bool to f64 losslessly. The resulting value is positive 0.0 for false and 1.0 for true values.
Examples
let x: f64 = false.into();
assert_eq!(x, 0.0);
assert!(x.is_sign_positive());
let y: f64 = true.into();
assert_eq!(y, 1.0);
     impl From<f32> for f64
    fn from(small: f32) -> f64
     Converts f32 to f64 losslessly.
impl From<i16> for f64
    fn from(small: i16) -> f64
     Converts i16 to f64 losslessly.
impl From<i32> for f64
    fn from(small: i32) -> f64
     Converts i32 to f64 losslessly.
impl From<i8> for f64
    fn from(small: i8) -> f64
     Converts i8 to f64 losslessly.
impl From<u16> for f64
    fn from(small: u16) -> f64
     Converts u16 to f64 losslessly.
impl From<u32> for f64
    fn from(small: u32) -> f64
     Converts u32 to f64 losslessly.
impl From<u8> for f64
    fn from(small: u8) -> f64
     Converts u8 to f64 losslessly.
impl FromStr for f64
    fn from_str(src: &str) -> Result<f64, ParseFloatError>
     Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- ‘3.14’
 - ‘-3.14’
 - ‘2.5E10’, or equivalently, ‘2.5e10’
 - ‘2.5E-10’
 - ‘5.’
 - ‘.5’, or, equivalently, ‘0.5’
 - ‘inf’, ‘-inf’, ‘+infinity’, ‘NaN’
 
Note that alphabetical characters are not case-sensitive.
Leading and trailing whitespace represent an error.
Grammar
All strings that adhere to the following EBNF grammar when lowercased will result in an Ok being returned:
Float  ::= Sign? ( 'inf' | 'infinity' | 'nan' | Number )
Number ::= ( Digit+ |
             Digit+ '.' Digit* |
             Digit* '.' Digit+ ) Exp?
Exp    ::= 'e' Sign? Digit+
Sign   ::= [+-]
Digit  ::= [0-9]
     Arguments
- src - A string
 
Return value
Err(ParseFloatError) if the string did not represent a valid number. Otherwise, Ok(n) where n is the closest representable floating-point number to the number represented by src (following the same rules for rounding as for the results of primitive operations).
type Err = ParseFloatError
     impl LowerExp for f64
    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
     impl Mul<&f64> for &f64
    type Output = <f64 as Mul>::Output
     * operator.
    fn mul(self, other: &f64) -> <f64 as Mul>::Output
     * operation. Read more
    impl Mul<&f64> for f64
    type Output = <f64 as Mul>::Output
     * operator.
    fn mul(self, other: &f64) -> <f64 as Mul>::Output
     * operation. Read more
    impl<'a> Mul<f64> for &'a f64
    type Output = <f64 as Mul>::Output
     * operator.
    fn mul(self, other: f64) -> <f64 as Mul>::Output
     * operation. Read more
    impl Mul for f64
    type Output = f64
     * operator.
    fn mul(self, other: f64) -> f64
     * operation. Read more
    impl MulAssign<&f64> for f64
    impl MulAssign for f64
    impl Neg for &f64
    type Output = <f64 as Neg>::Output
     - operator.
    fn neg(self) -> <f64 as Neg>::Output
     - operation. Read more
    impl Neg for f64
    type Output = f64
     - operator.
    fn neg(self) -> f64
     - operation. Read more
    impl PartialEq for f64
    fn eq(&self, other: &f64) -> bool
     self and other values to be equal, and is used by ==.
    fn ne(&self, other: &f64) -> bool
     !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
    impl PartialOrd for f64
    fn partial_cmp(&self, other: &f64) -> Option<Ordering>
     fn lt(&self, other: &f64) -> bool
     fn le(&self, other: &f64) -> bool
     self and other) and is used by the <= operator. Read more
    fn ge(&self, other: &f64) -> bool
     self and other) and is used by the >= operator. Read more
    fn gt(&self, other: &f64) -> bool
     impl<'a> Product<&'a f64> for f64
    fn product<I>(iter: I) -> f64
where
    I: Iterator<Item = &'a f64>,
     Self from the elements by multiplying the items.
    impl Product for f64
    fn product<I>(iter: I) -> f64
where
    I: Iterator<Item = f64>,
     Self from the elements by multiplying the items.
    impl Rem<&f64> for &f64
    type Output = <f64 as Rem>::Output
     % operator.
    fn rem(self, other: &f64) -> <f64 as Rem>::Output
     % operation. Read more
    impl Rem<&f64> for f64
    type Output = <f64 as Rem>::Output
     % operator.
    fn rem(self, other: &f64) -> <f64 as Rem>::Output
     % operation. Read more
    impl<'a> Rem<f64> for &'a f64
    type Output = <f64 as Rem>::Output
     % operator.
    fn rem(self, other: f64) -> <f64 as Rem>::Output
     % operation. Read more
    impl Rem for f64
    The remainder from the division of two floats.
The remainder has the same sign as the dividend and is computed as: x - (x / y).trunc() * y.
Examples
let x: f32 = 50.50;
let y: f32 = 8.125;
let remainder = x - (x / y).trunc() * y;
// The answer to both operations is 1.75
assert_eq!(x % y, remainder);
    type Output = f64
     % operator.
    fn rem(self, other: f64) -> f64
     % operation. Read more
    impl RemAssign<&f64> for f64
    impl RemAssign for f64
    impl SimdElement for f64
    type Mask = i64
     portable_simd #86656)
     impl Sub<&f64> for &f64
    type Output = <f64 as Sub>::Output
     - operator.
    fn sub(self, other: &f64) -> <f64 as Sub>::Output
     - operation. Read more
    impl Sub<&f64> for f64
    type Output = <f64 as Sub>::Output
     - operator.
    fn sub(self, other: &f64) -> <f64 as Sub>::Output
     - operation. Read more
    impl<'a> Sub<f64> for &'a f64
    type Output = <f64 as Sub>::Output
     - operator.
    fn sub(self, other: f64) -> <f64 as Sub>::Output
     - operation. Read more
    impl Sub for f64
    type Output = f64
     - operator.
    fn sub(self, other: f64) -> f64
     - operation. Read more
    impl SubAssign<&f64> for f64
    impl SubAssign for f64
    impl<'a> Sum<&'a f64> for f64
    fn sum<I>(iter: I) -> f64
where
    I: Iterator<Item = &'a f64>,
     Self from the elements by “summing up” the items.
    impl Sum for f64
    fn sum<I>(iter: I) -> f64
where
    I: Iterator<Item = f64>,
     Self from the elements by “summing up” the items.
    impl UpperExp for f64
    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
     impl Copy for f64
   impl FloatToInt<i128> for f64
   impl FloatToInt<i16> for f64
   impl FloatToInt<i32> for f64
   impl FloatToInt<i64> for f64
   impl FloatToInt<i8> for f64
   impl FloatToInt<isize> for f64
   impl FloatToInt<u128> for f64
   impl FloatToInt<u16> for f64
   impl FloatToInt<u32> for f64
   impl FloatToInt<u64> for f64
   impl FloatToInt<u8> for f64
   impl FloatToInt<usize> for f64
   impl SimdCast for f64
   Auto Trait Implementations
impl RefUnwindSafe for f64
   impl Send for f64
   impl Sync for f64
   impl Unpin for f64
   impl UnwindSafe for f64
   Blanket Implementations
impl<T> Any for T
where
    T: 'static + ?Sized,
    impl<T> Borrow<T> for T
where
    T: ?Sized,
    impl<T> BorrowMut<T> for T
where
    T: ?Sized,
    impl<T> From<T> for T
    fn from(t: T) -> T
     Returns the argument unchanged.
impl<T, U> Into<U> for T
where
    U: From<T>,
    fn into(self) -> U
     Calls U::from(self).
That is, this conversion is whatever the implementation of From<T> for U chooses to do.
impl<T> ToOwned for T
where
    T: Clone,
    type Owned = T
     fn to_owned(&self) -> T
     fn clone_into(&self, target: &mut T)
     impl<T> ToString for T
where
    T: Display + ?Sized,
    impl<T, U> TryFrom<U> for T
where
    U: Into<T>,
    type Error = Infallible
     fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
     impl<T, U> TryInto<U> for T
where
    U: TryFrom<T>,
    type Error = <U as TryFrom<T>>::Error
     fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
     © 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
 https://doc.rust-lang.org/std/primitive.f64.html