On this page
Primitive Type f64
A 64-bit floating point type (specifically, the “binary64” type defined in IEEE 754-2008).
This type is very similar to f32
, but has increased precision by using twice as many bits. Please see the documentation for f32
or Wikipedia on double precision values for more information.
See also the std::f64::consts
module.
Implementations
impl f64
pub fn floor(self) -> f64
Returns the largest integer less than or equal to self
.
Examples
let f = 3.7_f64;
let g = 3.0_f64;
let h = -3.7_f64;
assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);
assert_eq!(h.floor(), -4.0);
pub fn ceil(self) -> f64
Returns the smallest integer greater than or equal to self
.
Examples
let f = 3.01_f64;
let g = 4.0_f64;
assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);
pub fn round(self) -> f64
Returns the nearest integer to self
. If a value is half-way between two integers, round away from 0.0
.
Examples
let f = 3.3_f64;
let g = -3.3_f64;
let h = -3.7_f64;
let i = 3.5_f64;
let j = 4.5_f64;
assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);
assert_eq!(h.round(), -4.0);
assert_eq!(i.round(), 4.0);
assert_eq!(j.round(), 5.0);
pub fn round_ties_even(self) -> f64
round_ties_even
#96710)
Returns the nearest integer to a number. Rounds half-way cases to the number with an even least significant digit.
Examples
#![feature(round_ties_even)]
let f = 3.3_f64;
let g = -3.3_f64;
let h = 3.5_f64;
let i = 4.5_f64;
assert_eq!(f.round_ties_even(), 3.0);
assert_eq!(g.round_ties_even(), -3.0);
assert_eq!(h.round_ties_even(), 4.0);
assert_eq!(i.round_ties_even(), 4.0);
pub fn trunc(self) -> f64
Returns the integer part of self
. This means that non-integer numbers are always truncated towards zero.
Examples
let f = 3.7_f64;
let g = 3.0_f64;
let h = -3.7_f64;
assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), 3.0);
assert_eq!(h.trunc(), -3.0);
pub fn fract(self) -> f64
Returns the fractional part of self
.
Examples
let x = 3.6_f64;
let y = -3.6_f64;
let abs_difference_x = (x.fract() - 0.6).abs();
let abs_difference_y = (y.fract() - (-0.6)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
pub fn abs(self) -> f64
Computes the absolute value of self
.
Examples
let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
assert!(f64::NAN.abs().is_nan());
pub fn signum(self) -> f64
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
- NaN if the number is NaN
Examples
let f = 3.5_f64;
assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
assert!(f64::NAN.signum().is_nan());
pub fn copysign(self, sign: f64) -> f64
Returns a number composed of the magnitude of self
and the sign of sign
.
Equal to self
if the sign of self
and sign
are the same, otherwise equal to -self
. If self
is a NaN, then a NaN with the sign bit of sign
is returned. Note, however, that conserving the sign bit on NaN across arithmetical operations is not generally guaranteed. See explanation of NaN as a special value for more info.
Examples
let f = 3.5_f64;
assert_eq!(f.copysign(0.42), 3.5_f64);
assert_eq!(f.copysign(-0.42), -3.5_f64);
assert_eq!((-f).copysign(0.42), 3.5_f64);
assert_eq!((-f).copysign(-0.42), -3.5_f64);
assert!(f64::NAN.copysign(1.0).is_nan());
pub fn mul_add(self, a: f64, b: f64) -> f64
Fused multiply-add. Computes (self * a) + b
with only one rounding error, yielding a more accurate result than an unfused multiply-add.
Using mul_add
may be more performant than an unfused multiply-add if the target architecture has a dedicated fma
CPU instruction. However, this is not always true, and will be heavily dependant on designing algorithms with specific target hardware in mind.
Examples
let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;
// 100.0
let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
assert!(abs_difference < 1e-10);
pub fn div_euclid(self, rhs: f64) -> f64
Calculates Euclidean division, the matching method for rem_euclid
.
This computes the integer n
such that self = n * rhs + self.rem_euclid(rhs)
. In other words, the result is self / rhs
rounded to the integer n
such that self >= n * rhs
.
Examples
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
pub fn rem_euclid(self, rhs: f64) -> f64
Calculates the least nonnegative remainder of self (mod rhs)
.
In particular, the return value r
satisfies 0.0 <= r < rhs.abs()
in most cases. However, due to a floating point round-off error it can result in r == rhs.abs()
, violating the mathematical definition, if self
is much smaller than rhs.abs()
in magnitude and self < 0.0
. This result is not an element of the function’s codomain, but it is the closest floating point number in the real numbers and thus fulfills the property self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)
approximately.
Examples
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.rem_euclid(b), 3.0);
assert_eq!((-a).rem_euclid(b), 1.0);
assert_eq!(a.rem_euclid(-b), 3.0);
assert_eq!((-a).rem_euclid(-b), 1.0);
// limitation due to round-off error
assert!((-f64::EPSILON).rem_euclid(3.0) != 0.0);
pub fn powi(self, n: i32) -> f64
Raises a number to an integer power.
Using this function is generally faster than using powf
. It might have a different sequence of rounding operations than powf
, so the results are not guaranteed to agree.
Examples
let x = 2.0_f64;
let abs_difference = (x.powi(2) - (x * x)).abs();
assert!(abs_difference < 1e-10);
pub fn powf(self, n: f64) -> f64
Raises a number to a floating point power.
Examples
let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - (x * x)).abs();
assert!(abs_difference < 1e-10);
pub fn sqrt(self) -> f64
Returns the square root of a number.
Returns NaN if self
is a negative number other than -0.0
.
Examples
let positive = 4.0_f64;
let negative = -4.0_f64;
let negative_zero = -0.0_f64;
let abs_difference = (positive.sqrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());
assert!(negative_zero.sqrt() == negative_zero);
pub fn exp(self) -> f64
Returns e^(self)
, (the exponential function).
Examples
let one = 1.0_f64;
// e^1
let e = one.exp();
// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();
assert!(abs_difference < 1e-10);
pub fn exp2(self) -> f64
Returns 2^(self)
.
Examples
let f = 2.0_f64;
// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();
assert!(abs_difference < 1e-10);
pub fn ln(self) -> f64
Returns the natural logarithm of the number.
Examples
let one = 1.0_f64;
// e^1
let e = one.exp();
// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();
assert!(abs_difference < 1e-10);
pub fn log(self, base: f64) -> f64
Returns the logarithm of the number with respect to an arbitrary base.
The result might not be correctly rounded owing to implementation details; self.log2()
can produce more accurate results for base 2, and self.log10()
can produce more accurate results for base 10.
Examples
let twenty_five = 25.0_f64;
// log5(25) - 2 == 0
let abs_difference = (twenty_five.log(5.0) - 2.0).abs();
assert!(abs_difference < 1e-10);
pub fn log2(self) -> f64
Returns the base 2 logarithm of the number.
Examples
let four = 4.0_f64;
// log2(4) - 2 == 0
let abs_difference = (four.log2() - 2.0).abs();
assert!(abs_difference < 1e-10);
pub fn log10(self) -> f64
Returns the base 10 logarithm of the number.
Examples
let hundred = 100.0_f64;
// log10(100) - 2 == 0
let abs_difference = (hundred.log10() - 2.0).abs();
assert!(abs_difference < 1e-10);
pub fn abs_sub(self, other: f64) -> f64
(self - other).abs()
: this operation is (self - other).max(0.0)
except that abs_sub
also propagates NaNs (also known as fdim
in C). If you truly need the positive difference, consider using that expression or the C function fdim
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0.0
- Else:
self - other
Examples
let x = 3.0_f64;
let y = -3.0_f64;
let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
pub fn cbrt(self) -> f64
Returns the cube root of a number.
Examples
let x = 8.0_f64;
// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
pub fn hypot(self, other: f64) -> f64
Compute the distance between the origin and a point (x
, y
) on the Euclidean plane. Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length x.abs()
and y.abs()
.
Examples
let x = 2.0_f64;
let y = 3.0_f64;
// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
assert!(abs_difference < 1e-10);
pub fn sin(self) -> f64
Computes the sine of a number (in radians).
Examples
let x = std::f64::consts::FRAC_PI_2;
let abs_difference = (x.sin() - 1.0).abs();
assert!(abs_difference < 1e-10);
pub fn cos(self) -> f64
Computes the cosine of a number (in radians).
Examples
let x = 2.0 * std::f64::consts::PI;
let abs_difference = (x.cos() - 1.0).abs();
assert!(abs_difference < 1e-10);
pub fn tan(self) -> f64
Computes the tangent of a number (in radians).
Examples
let x = std::f64::consts::FRAC_PI_4;
let abs_difference = (x.tan() - 1.0).abs();
assert!(abs_difference < 1e-14);
pub fn asin(self) -> f64
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
Examples
let f = std::f64::consts::FRAC_PI_2;
// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - std::f64::consts::FRAC_PI_2).abs();
assert!(abs_difference < 1e-10);
pub fn acos(self) -> f64
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
Examples
let f = std::f64::consts::FRAC_PI_4;
// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - std::f64::consts::FRAC_PI_4).abs();
assert!(abs_difference < 1e-10);
pub fn atan(self) -> f64
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
Examples
let f = 1.0_f64;
// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();
assert!(abs_difference < 1e-10);
pub fn atan2(self, other: f64) -> f64
Computes the four quadrant arctangent of self
(y
) and other
(x
) in radians.
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
Examples
// Positive angles measured counter-clockwise
// from positive x axis
// -pi/4 radians (45 deg clockwise)
let x1 = 3.0_f64;
let y1 = -3.0_f64;
// 3pi/4 radians (135 deg counter-clockwise)
let x2 = -3.0_f64;
let y2 = 3.0_f64;
let abs_difference_1 = (y1.atan2(x1) - (-std::f64::consts::FRAC_PI_4)).abs();
let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs();
assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
pub fn sin_cos(self) -> (f64, f64)
Simultaneously computes the sine and cosine of the number, x
. Returns (sin(x), cos(x))
.
Examples
let x = std::f64::consts::FRAC_PI_4;
let f = x.sin_cos();
let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();
assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);
pub fn exp_m1(self) -> f64
Returns e^(self) - 1
in a way that is accurate even if the number is close to zero.
Examples
let x = 1e-16_f64;
// for very small x, e^x is approximately 1 + x + x^2 / 2
let approx = x + x * x / 2.0;
let abs_difference = (x.exp_m1() - approx).abs();
assert!(abs_difference < 1e-20);
pub fn ln_1p(self) -> f64
Returns ln(1+n)
(natural logarithm) more accurately than if the operations were performed separately.
Examples
let x = 1e-16_f64;
// for very small x, ln(1 + x) is approximately x - x^2 / 2
let approx = x - x * x / 2.0;
let abs_difference = (x.ln_1p() - approx).abs();
assert!(abs_difference < 1e-20);
pub fn sinh(self) -> f64
Hyperbolic sine function.
Examples
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = ((e * e) - 1.0) / (2.0 * e);
let abs_difference = (f - g).abs();
assert!(abs_difference < 1e-10);
pub fn cosh(self) -> f64
Hyperbolic cosine function.
Examples
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = ((e * e) + 1.0) / (2.0 * e);
let abs_difference = (f - g).abs();
// Same result
assert!(abs_difference < 1.0e-10);
pub fn tanh(self) -> f64
Hyperbolic tangent function.
Examples
let e = std::f64::consts::E;
let x = 1.0_f64;
let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
let abs_difference = (f - g).abs();
assert!(abs_difference < 1.0e-10);
pub fn asinh(self) -> f64
Inverse hyperbolic sine function.
Examples
let x = 1.0_f64;
let f = x.sinh().asinh();
let abs_difference = (f - x).abs();
assert!(abs_difference < 1.0e-10);
pub fn acosh(self) -> f64
Inverse hyperbolic cosine function.
Examples
let x = 1.0_f64;
let f = x.cosh().acosh();
let abs_difference = (f - x).abs();
assert!(abs_difference < 1.0e-10);
pub fn atanh(self) -> f64
Inverse hyperbolic tangent function.
Examples
let e = std::f64::consts::E;
let f = e.tanh().atanh();
let abs_difference = (f - e).abs();
assert!(abs_difference < 1.0e-10);
pub fn gamma(self) -> f64
float_gamma
#99842)
Gamma function.
Examples
#![feature(float_gamma)]
let x = 5.0f64;
let abs_difference = (x.gamma() - 24.0).abs();
assert!(abs_difference <= f64::EPSILON);
pub fn ln_gamma(self) -> (f64, i32)
float_gamma
#99842)
Natural logarithm of the absolute value of the gamma function
The integer part of the tuple indicates the sign of the gamma function.
Examples
#![feature(float_gamma)]
let x = 2.0f64;
let abs_difference = (x.ln_gamma().0 - 0.0).abs();
assert!(abs_difference <= f64::EPSILON);
impl f64
pub const RADIX: u32 = 2u32
The radix or base of the internal representation of f64
.
pub const MANTISSA_DIGITS: u32 = 53u32
Number of significant digits in base 2.
pub const DIGITS: u32 = 15u32
Approximate number of significant digits in base 10.
This is the maximum x such that any decimal number with x significant digits can be converted to f64
and back without loss.
Equal to floor(log10 2MANTISSA_DIGITS
− 1).
pub const EPSILON: f64 = 2.2204460492503131E-16f64
Machine epsilon value for f64
.
This is the difference between 1.0
and the next larger representable number.
Equal to 21 − MANTISSA_DIGITS
.
pub const MIN: f64 = -1.7976931348623157E+308f64
Smallest finite f64
value.
Equal to −MAX
.
pub const MIN_POSITIVE: f64 = 2.2250738585072014E-308f64
Smallest positive normal f64
value.
Equal to 2MIN_EXP
− 1.
pub const MAX: f64 = 1.7976931348623157E+308f64
Largest finite f64
value.
Equal to (1 − 2−MANTISSA_DIGITS
) 2MAX_EXP
.
pub const MIN_EXP: i32 = -1_021i32
One greater than the minimum possible normal power of 2 exponent.
If x = MIN_EXP
, then normal numbers ≥ 0.5 × 2x.
pub const MAX_EXP: i32 = 1_024i32
Maximum possible power of 2 exponent.
If x = MAX_EXP
, then normal numbers < 1 × 2x.
pub const MIN_10_EXP: i32 = -307i32
Minimum x for which 10x is normal.
Equal to ceil(log10 MIN_POSITIVE
).
pub const MAX_10_EXP: i32 = 308i32
Maximum x for which 10x is normal.
Equal to floor(log10 MAX
).
pub const NAN: f64 = NaNf64
Not a Number (NaN).
Note that IEEE 754 doesn’t define just a single NaN value; a plethora of bit patterns are considered to be NaN. Furthermore, the standard makes a difference between a “signaling” and a “quiet” NaN, and allows inspecting its “payload” (the unspecified bits in the bit pattern). This constant isn’t guaranteed to equal to any specific NaN bitpattern, and the stability of its representation over Rust versions and target platforms isn’t guaranteed.
pub const INFINITY: f64 = +Inff64
Infinity (∞).
pub const NEG_INFINITY: f64 = -Inff64
Negative infinity (−∞).
pub fn is_nan(self) -> bool
Returns true
if this value is NaN.
let nan = f64::NAN;
let f = 7.0_f64;
assert!(nan.is_nan());
assert!(!f.is_nan());
pub fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity, and false
otherwise.
let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
pub fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN.
let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
pub fn is_subnormal(self) -> bool
Returns true
if the number is subnormal.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;
assert!(!min.is_subnormal());
assert!(!max.is_subnormal());
assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
// Values between `0` and `min` are Subnormal.
assert!(lower_than_min.is_subnormal());
pub fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal, or NaN.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
pub fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory;
let num = 12.4_f64;
let inf = f64::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
pub fn is_sign_positive(self) -> bool
Returns true
if self
has a positive sign, including +0.0
, NaNs with positive sign bit and positive infinity. Note that IEEE 754 doesn’t assign any meaning to the sign bit in case of a NaN, and as Rust doesn’t guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the result of is_sign_positive
on a NaN might produce an unexpected result in some cases. See explanation of NaN as a special value for more info.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
pub fn is_sign_negative(self) -> bool
Returns true
if self
has a negative sign, including -0.0
, NaNs with negative sign bit and negative infinity. Note that IEEE 754 doesn’t assign any meaning to the sign bit in case of a NaN, and as Rust doesn’t guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the result of is_sign_negative
on a NaN might produce an unexpected result in some cases. See explanation of NaN as a special value for more info.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
pub fn next_up(self) -> f64
float_next_up_down
#91399)
Returns the least number greater than self
.
Let TINY
be the smallest representable positive f64
. Then,
- if
self.is_nan()
, this returnsself
; - if
self
isNEG_INFINITY
, this returnsMIN
; - if
self
is-TINY
, this returns -0.0; - if
self
is -0.0 or +0.0, this returnsTINY
; - if
self
isMAX
orINFINITY
, this returnsINFINITY
; - otherwise the unique least value greater than
self
is returned.
The identity x.next_up() == -(-x).next_down()
holds for all non-NaN x
. When x
is finite x == x.next_up().next_down()
also holds.
#![feature(float_next_up_down)]
// f64::EPSILON is the difference between 1.0 and the next number up.
assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
// But not for most numbers.
assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
pub fn next_down(self) -> f64
float_next_up_down
#91399)
Returns the greatest number less than self
.
Let TINY
be the smallest representable positive f64
. Then,
- if
self.is_nan()
, this returnsself
; - if
self
isINFINITY
, this returnsMAX
; - if
self
isTINY
, this returns 0.0; - if
self
is -0.0 or +0.0, this returns-TINY
; - if
self
isMIN
orNEG_INFINITY
, this returnsNEG_INFINITY
; - otherwise the unique greatest value less than
self
is returned.
The identity x.next_down() == -(-x).next_up()
holds for all non-NaN x
. When x
is finite x == x.next_down().next_up()
also holds.
#![feature(float_next_up_down)]
let x = 1.0f64;
// Clamp value into range [0, 1).
let clamped = x.clamp(0.0, 1.0f64.next_down());
assert!(clamped < 1.0);
assert_eq!(clamped.next_up(), 1.0);
pub fn recip(self) -> f64
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0 / x)).abs();
assert!(abs_difference < 1e-10);
pub fn to_degrees(self) -> f64
Converts radians to degrees.
let angle = std::f64::consts::PI;
let abs_difference = (angle.to_degrees() - 180.0).abs();
assert!(abs_difference < 1e-10);
pub fn to_radians(self) -> f64
Converts degrees to radians.
let angle = 180.0_f64;
let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
assert!(abs_difference < 1e-10);
pub fn max(self, other: f64) -> f64
Returns the maximum of the two numbers, ignoring NaN.
If one of the arguments is NaN, then the other argument is returned. This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; this function handles all NaNs the same way and avoids maxNum’s problems with associativity. This also matches the behavior of libm’s fmax.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.max(y), y);
pub fn min(self, other: f64) -> f64
Returns the minimum of the two numbers, ignoring NaN.
If one of the arguments is NaN, then the other argument is returned. This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; this function handles all NaNs the same way and avoids minNum’s problems with associativity. This also matches the behavior of libm’s fmin.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.min(y), x);
pub fn maximum(self, other: f64) -> f64
float_minimum_maximum
#91079)
Returns the maximum of the two numbers, propagating NaN.
This returns NaN when either argument is NaN, as opposed to f64::max
which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.maximum(y), y);
assert!(x.maximum(f64::NAN).is_nan());
If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
Also note that “propagation” of NaNs here doesn’t necessarily mean that the bitpattern of a NaN operand is conserved; see explanation of NaN as a special value for more info.
pub fn minimum(self, other: f64) -> f64
float_minimum_maximum
#91079)
Returns the minimum of the two numbers, propagating NaN.
This returns NaN when either argument is NaN, as opposed to f64::min
which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.minimum(y), x);
assert!(x.minimum(f64::NAN).is_nan());
If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
Also note that “propagation” of NaNs here doesn’t necessarily mean that the bitpattern of a NaN operand is conserved; see explanation of NaN as a special value for more info.
pub fn midpoint(self, other: f64) -> f64
num_midpoint
#110840)
Calculates the middle point of self
and rhs
.
This returns NaN when either argument is NaN or if a combination of +inf and -inf is provided as arguments.
Examples
#![feature(num_midpoint)]
assert_eq!(1f64.midpoint(4.0), 2.5);
assert_eq!((-5.5f64).midpoint(8.0), 1.25);
pub unsafe fn to_int_unchecked<Int>(self) -> Int
where
f64: FloatToInt<Int>,
Rounds toward zero and converts to any primitive integer type, assuming that the value is finite and fits in that type.
let value = 4.6_f64;
let rounded = unsafe { value.to_int_unchecked::<u16>() };
assert_eq!(rounded, 4);
let value = -128.9_f64;
let rounded = unsafe { value.to_int_unchecked::<i8>() };
assert_eq!(rounded, i8::MIN);
Safety
The value must:
- Not be
NaN
- Not be infinite
- Be representable in the return type
Int
, after truncating off its fractional part
pub fn to_bits(self) -> u64
Raw transmutation to u64
.
This is currently identical to transmute::<f64, u64>(self)
on all platforms.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Note that this function is distinct from as
casting, which attempts to preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
pub fn from_bits(v: u64) -> f64
Raw transmutation from u64
.
This is currently identical to transmute::<u64, f64>(v)
on all platforms. It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE 754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE 754, how to interpret the NaN signaling bit wasn’t actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn’t (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favors preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn’t NaN, then there is no portability concern.
If you don’t care about signaling-ness (very likely), then there is no portability concern.
Note that this function is distinct from as
casting, which attempts to preserve the numeric value, and not the bitwise value.
Examples
let v = f64::from_bits(0x4029000000000000);
assert_eq!(v, 12.5);
pub fn to_be_bytes(self) -> [u8; 8]
Return the memory representation of this floating point number as a byte array in big-endian (network) byte order.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_be_bytes();
assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
pub fn to_le_bytes(self) -> [u8; 8]
Return the memory representation of this floating point number as a byte array in little-endian byte order.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_le_bytes();
assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
pub fn to_ne_bytes(self) -> [u8; 8]
Return the memory representation of this floating point number as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should use to_be_bytes
or to_le_bytes
, as appropriate, instead.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_ne_bytes();
assert_eq!(
bytes,
if cfg!(target_endian = "big") {
[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
}
);
pub fn from_be_bytes(bytes: [u8; 8]) -> f64
Create a floating point value from its representation as a byte array in big endian.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Examples
let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
assert_eq!(value, 12.5);
pub fn from_le_bytes(bytes: [u8; 8]) -> f64
Create a floating point value from its representation as a byte array in little endian.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Examples
let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
assert_eq!(value, 12.5);
pub fn from_ne_bytes(bytes: [u8; 8]) -> f64
Create a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code likely wants to use from_be_bytes
or from_le_bytes
, as appropriate instead.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Examples
let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
});
assert_eq!(value, 12.5);
pub fn total_cmp(&self, other: &f64) -> Ordering
Return the ordering between self
and other
.
Unlike the standard partial comparison between floating point numbers, this comparison always produces an ordering in accordance to the totalOrder
predicate as defined in the IEEE 754 (2008 revision) floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
- negative signaling NaN
- negative infinity
- negative numbers
- negative subnormal numbers
- negative zero
- positive zero
- positive subnormal numbers
- positive numbers
- positive infinity
- positive signaling NaN
- positive quiet NaN.
The ordering established by this function does not always agree with the PartialOrd
and PartialEq
implementations of f64
. For example, they consider negative and positive zero equal, while total_cmp
doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
Example
struct GoodBoy {
name: String,
weight: f64,
}
let mut bois = vec![
GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];
bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
pub fn clamp(self, min: f64, max: f64) -> f64
Restrict a value to a certain interval unless it is NaN.
Returns max
if self
is greater than max
, and min
if self
is less than min
. Otherwise this returns self
.
Note that this function returns NaN if the initial value was NaN as well.
Panics
Panics if min > max
, min
is NaN, or max
is NaN.
Examples
assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
Trait Implementations
impl Add<&f64> for &f64
type Output = <f64 as Add>::Output
+
operator.
fn add(self, other: &f64) -> <f64 as Add>::Output
+
operation. Read more
impl Add<&f64> for f64
type Output = <f64 as Add>::Output
+
operator.
fn add(self, other: &f64) -> <f64 as Add>::Output
+
operation. Read more
impl<'a> Add<f64> for &'a f64
type Output = <f64 as Add>::Output
+
operator.
fn add(self, other: f64) -> <f64 as Add>::Output
+
operation. Read more
impl Add for f64
type Output = f64
+
operator.
fn add(self, other: f64) -> f64
+
operation. Read more
impl AddAssign<&f64> for f64
impl AddAssign for f64
impl Clone for f64
fn clone(&self) -> f64
fn clone_from(&mut self, source: &Self)
source
. Read more
impl Debug for f64
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
impl Default for f64
fn default() -> f64
Returns the default value of 0.0
impl Display for f64
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
impl Div<&f64> for &f64
type Output = <f64 as Div>::Output
/
operator.
fn div(self, other: &f64) -> <f64 as Div>::Output
/
operation. Read more
impl Div<&f64> for f64
type Output = <f64 as Div>::Output
/
operator.
fn div(self, other: &f64) -> <f64 as Div>::Output
/
operation. Read more
impl<'a> Div<f64> for &'a f64
type Output = <f64 as Div>::Output
/
operator.
fn div(self, other: f64) -> <f64 as Div>::Output
/
operation. Read more
impl Div for f64
type Output = f64
/
operator.
fn div(self, other: f64) -> f64
/
operation. Read more
impl DivAssign<&f64> for f64
impl DivAssign for f64
impl From<bool> for f64
fn from(small: bool) -> f64
Converts bool
to f64
losslessly. The resulting value is positive 0.0
for false
and 1.0
for true
values.
Examples
let x: f64 = false.into();
assert_eq!(x, 0.0);
assert!(x.is_sign_positive());
let y: f64 = true.into();
assert_eq!(y, 1.0);
impl From<f32> for f64
fn from(small: f32) -> f64
Converts f32
to f64
losslessly.
impl From<i16> for f64
fn from(small: i16) -> f64
Converts i16
to f64
losslessly.
impl From<i32> for f64
fn from(small: i32) -> f64
Converts i32
to f64
losslessly.
impl From<i8> for f64
fn from(small: i8) -> f64
Converts i8
to f64
losslessly.
impl From<u16> for f64
fn from(small: u16) -> f64
Converts u16
to f64
losslessly.
impl From<u32> for f64
fn from(small: u32) -> f64
Converts u32
to f64
losslessly.
impl From<u8> for f64
fn from(small: u8) -> f64
Converts u8
to f64
losslessly.
impl FromStr for f64
fn from_str(src: &str) -> Result<f64, ParseFloatError>
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- ‘3.14’
- ‘-3.14’
- ‘2.5E10’, or equivalently, ‘2.5e10’
- ‘2.5E-10’
- ‘5.’
- ‘.5’, or, equivalently, ‘0.5’
- ‘inf’, ‘-inf’, ‘+infinity’, ‘NaN’
Note that alphabetical characters are not case-sensitive.
Leading and trailing whitespace represent an error.
Grammar
All strings that adhere to the following EBNF grammar when lowercased will result in an Ok
being returned:
Float ::= Sign? ( 'inf' | 'infinity' | 'nan' | Number )
Number ::= ( Digit+ |
Digit+ '.' Digit* |
Digit* '.' Digit+ ) Exp?
Exp ::= 'e' Sign? Digit+
Sign ::= [+-]
Digit ::= [0-9]
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid number. Otherwise, Ok(n)
where n
is the closest representable floating-point number to the number represented by src
(following the same rules for rounding as for the results of primitive operations).
type Err = ParseFloatError
impl LowerExp for f64
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
impl Mul<&f64> for &f64
type Output = <f64 as Mul>::Output
*
operator.
fn mul(self, other: &f64) -> <f64 as Mul>::Output
*
operation. Read more
impl Mul<&f64> for f64
type Output = <f64 as Mul>::Output
*
operator.
fn mul(self, other: &f64) -> <f64 as Mul>::Output
*
operation. Read more
impl<'a> Mul<f64> for &'a f64
type Output = <f64 as Mul>::Output
*
operator.
fn mul(self, other: f64) -> <f64 as Mul>::Output
*
operation. Read more
impl Mul for f64
type Output = f64
*
operator.
fn mul(self, other: f64) -> f64
*
operation. Read more
impl MulAssign<&f64> for f64
impl MulAssign for f64
impl Neg for &f64
type Output = <f64 as Neg>::Output
-
operator.
fn neg(self) -> <f64 as Neg>::Output
-
operation. Read more
impl Neg for f64
type Output = f64
-
operator.
fn neg(self) -> f64
-
operation. Read more
impl PartialEq for f64
fn eq(&self, other: &f64) -> bool
self
and other
values to be equal, and is used by ==
.
fn ne(&self, other: &f64) -> bool
!=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
impl PartialOrd for f64
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
fn lt(&self, other: &f64) -> bool
fn le(&self, other: &f64) -> bool
self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &f64) -> bool
self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &f64) -> bool
impl<'a> Product<&'a f64> for f64
fn product<I>(iter: I) -> f64
where
I: Iterator<Item = &'a f64>,
Self
from the elements by multiplying the items.
impl Product for f64
fn product<I>(iter: I) -> f64
where
I: Iterator<Item = f64>,
Self
from the elements by multiplying the items.
impl Rem<&f64> for &f64
type Output = <f64 as Rem>::Output
%
operator.
fn rem(self, other: &f64) -> <f64 as Rem>::Output
%
operation. Read more
impl Rem<&f64> for f64
type Output = <f64 as Rem>::Output
%
operator.
fn rem(self, other: &f64) -> <f64 as Rem>::Output
%
operation. Read more
impl<'a> Rem<f64> for &'a f64
type Output = <f64 as Rem>::Output
%
operator.
fn rem(self, other: f64) -> <f64 as Rem>::Output
%
operation. Read more
impl Rem for f64
The remainder from the division of two floats.
The remainder has the same sign as the dividend and is computed as: x - (x / y).trunc() * y
.
Examples
let x: f32 = 50.50;
let y: f32 = 8.125;
let remainder = x - (x / y).trunc() * y;
// The answer to both operations is 1.75
assert_eq!(x % y, remainder);
type Output = f64
%
operator.
fn rem(self, other: f64) -> f64
%
operation. Read more
impl RemAssign<&f64> for f64
impl RemAssign for f64
impl SimdElement for f64
type Mask = i64
portable_simd
#86656)
impl Sub<&f64> for &f64
type Output = <f64 as Sub>::Output
-
operator.
fn sub(self, other: &f64) -> <f64 as Sub>::Output
-
operation. Read more
impl Sub<&f64> for f64
type Output = <f64 as Sub>::Output
-
operator.
fn sub(self, other: &f64) -> <f64 as Sub>::Output
-
operation. Read more
impl<'a> Sub<f64> for &'a f64
type Output = <f64 as Sub>::Output
-
operator.
fn sub(self, other: f64) -> <f64 as Sub>::Output
-
operation. Read more
impl Sub for f64
type Output = f64
-
operator.
fn sub(self, other: f64) -> f64
-
operation. Read more
impl SubAssign<&f64> for f64
impl SubAssign for f64
impl<'a> Sum<&'a f64> for f64
fn sum<I>(iter: I) -> f64
where
I: Iterator<Item = &'a f64>,
Self
from the elements by “summing up” the items.
impl Sum for f64
fn sum<I>(iter: I) -> f64
where
I: Iterator<Item = f64>,
Self
from the elements by “summing up” the items.
impl UpperExp for f64
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>
impl Copy for f64
impl FloatToInt<i128> for f64
impl FloatToInt<i16> for f64
impl FloatToInt<i32> for f64
impl FloatToInt<i64> for f64
impl FloatToInt<i8> for f64
impl FloatToInt<isize> for f64
impl FloatToInt<u128> for f64
impl FloatToInt<u16> for f64
impl FloatToInt<u32> for f64
impl FloatToInt<u64> for f64
impl FloatToInt<u8> for f64
impl FloatToInt<usize> for f64
impl SimdCast for f64
Auto Trait Implementations
impl RefUnwindSafe for f64
impl Send for f64
impl Sync for f64
impl Unpin for f64
impl UnwindSafe for f64
Blanket Implementations
impl<T> Any for T
where
T: 'static + ?Sized,
impl<T> Borrow<T> for T
where
T: ?Sized,
impl<T> BorrowMut<T> for T
where
T: ?Sized,
impl<T> From<T> for T
fn from(t: T) -> T
Returns the argument unchanged.
impl<T, U> Into<U> for T
where
U: From<T>,
fn into(self) -> U
Calls U::from(self)
.
That is, this conversion is whatever the implementation of From<T> for U
chooses to do.
impl<T> ToOwned for T
where
T: Clone,
type Owned = T
fn to_owned(&self) -> T
fn clone_into(&self, target: &mut T)
impl<T> ToString for T
where
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T
where
U: Into<T>,
type Error = Infallible
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
impl<T, U> TryInto<U> for T
where
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/primitive.f64.html