On this page
tf.tpu.experimental.shared_embedding_columns
TPU version of tf.compat.v1.feature_column.shared_embedding_columns.
tf.tpu.experimental.shared_embedding_columns(
categorical_columns, dimension, combiner='mean', initializer=None,
shared_embedding_collection_name=None, max_sequence_lengths=None,
learning_rate_fn=None
)
Note that the interface for tf.tpu.experimental.shared_embedding_columns is different from that of tf.compat.v1.feature_column.shared_embedding_columns: The following arguments are NOT supported: ckpt_to_load_from, tensor_name_in_ckpt, max_norm and trainable.
Use this function in place of tf.compat.v1.feature_column.shared_embedding_columns` when you want to use the TPU to accelerate your embedding lookups via TPU embeddings.
column_a = tf.feature_column.categorical_column_with_identity(...)
column_b = tf.feature_column.categorical_column_with_identity(...)
tpu_columns = tf.tpu.experimental.shared_embedding_columns(
[column_a, column_b], 10)
...
def model_fn(features):
dense_feature = tf.keras.layers.DenseFeature(tpu_columns)
embedded_feature = dense_feature(features)
...
estimator = tf.estimator.tpu.TPUEstimator(
model_fn=model_fn,
...
embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
column=tpu_columns,
...))
| Args | |
|---|---|
categorical_columns |
A list of categorical columns returned from categorical_column_with_identity, weighted_categorical_column, categorical_column_with_vocabulary_file, categorical_column_with_vocabulary_list, sequence_categorical_column_with_identity, sequence_categorical_column_with_vocabulary_file, sequence_categorical_column_with_vocabulary_list |
dimension |
An integer specifying dimension of the embedding, must be > 0. |
combiner |
A string specifying how to reduce if there are multiple entries in a single row for a non-sequence column. For more information, see tf.feature_column.embedding_column. |
initializer |
A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.truncated_normal_initializer with mean 0.0 and standard deviation 1/sqrt(dimension). |
shared_embedding_collection_name |
Optional name of the collection where shared embedding weights are added. If not given, a reasonable name will be chosen based on the names of categorical_columns. This is also used in variable_scope when creating shared embedding weights. |
max_sequence_lengths |
An list of non-negative integers, either None or empty or the same length as the argument categorical_columns. Entries corresponding to non-sequence columns must be 0 and entries corresponding to sequence columns specify the max sequence length for the column. Any sequence shorter then this will be padded with 0 embeddings and any sequence longer will be truncated. |
learning_rate_fn |
A function that takes global step and returns learning rate for the embedding table. |
| Returns | |
|---|---|
A list of _TPUSharedEmbeddingColumnV2. |
| Raises | |
|---|---|
ValueError |
if dimension not > 0. |
ValueError |
if initializer is specified but not callable. |
ValueError |
if max_sequence_lengths is specified and not the same length as categorical_columns. |
ValueError |
if max_sequence_lengths is positive for a non sequence column or 0 for a sequence column. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/tpu/experimental/shared_embedding_columns