On this page
Control.Monad.Fix
Copyright | (c) Andy Gill 2001 (c) Oregon Graduate Institute of Science and Technology 2002 |
---|---|
License | BSD-style (see the file libraries/base/LICENSE) |
Maintainer | libraries@haskell.org |
Stability | stable |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
Description
Monadic fixpoints.
For a detailed discussion, see Levent Erkok's thesis, Value Recursion in Monadic Computations, Oregon Graduate Institute, 2002.
class Monad m => MonadFix m where Source
Monads having fixed points with a 'knot-tying' semantics. Instances of MonadFix
should satisfy the following laws:
- Purity
-
mfix (return . h) = return (fix h)
- Left shrinking (or Tightening)
-
mfix (\x -> a >>= \y -> f x y) = a >>= \y -> mfix (\x -> f x y)
- Sliding
mfix (liftM h . f) = liftM h (mfix (f . h))
, for stricth
.- Nesting
-
mfix (\x -> mfix (\y -> f x y)) = mfix (\x -> f x x)
This class is used in the translation of the recursive do
notation supported by GHC and Hugs.
Methods
mfix :: (a -> m a) -> m a Source
The fixed point of a monadic computation. mfix f
executes the action f
only once, with the eventual output fed back as the input. Hence f
should not be strict, for then mfix f
would diverge.
Instances
MonadFix Complex Source | Since: base-4.15.0.0 |
Defined in Data.Complex |
|
MonadFix Identity Source | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity |
|
MonadFix First Source | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix Last Source | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix Down Source | Since: base-4.12.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix First Source | Since: base-4.9.0.0 |
Defined in Data.Semigroup |
|
MonadFix Last Source | Since: base-4.9.0.0 |
Defined in Data.Semigroup |
|
MonadFix Max Source | Since: base-4.9.0.0 |
Defined in Data.Semigroup |
|
MonadFix Min Source | Since: base-4.9.0.0 |
Defined in Data.Semigroup |
|
MonadFix Dual Source | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix Product Source | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix Sum Source | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix Par1 Source | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix IO Source | Since: base-2.1 |
Defined in Control.Monad.Fix |
|
MonadFix NonEmpty Source | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix Maybe Source | Since: base-2.1 |
Defined in Control.Monad.Fix |
|
MonadFix Solo Source | Since: base-4.15 |
Defined in Control.Monad.Fix |
|
MonadFix [] Source | Since: base-2.1 |
Defined in Control.Monad.Fix |
|
MonadFix (ST s) Source | Since: base-2.1 |
Defined in Control.Monad.ST.Lazy.Imp |
|
MonadFix (Either e) Source | Since: base-4.3.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix (ST s) Source | Since: base-2.1 |
Defined in Control.Monad.Fix |
|
MonadFix f => MonadFix (Ap f) Source | Since: base-4.12.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix f => MonadFix (Alt f) Source | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix f => MonadFix (Rec1 f) Source | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix |
|
(MonadFix f, MonadFix g) => MonadFix (Product f g) Source | Since: base-4.9.0.0 |
Defined in Data.Functor.Product |
|
(MonadFix f, MonadFix g) => MonadFix (f :*: g) Source | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix |
|
MonadFix ((->) r) Source | Since: base-2.1 |
Defined in Control.Monad.Fix |
|
MonadFix f => MonadFix (M1 i c f) Source | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix |
fix f
is the least fixed point of the function f
, i.e. the least defined x
such that f x = x
.
For example, we can write the factorial function using direct recursion as
>>> let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5
120
This uses the fact that Haskell’s let
introduces recursive bindings. We can rewrite this definition using fix
,
>>> fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5
120
Instead of making a recursive call, we introduce a dummy parameter rec
; when used within fix
, this parameter then refers to fix
’s argument, hence the recursion is reintroduced.
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/9.4.2/docs/libraries/base-4.17.0.0/Control-Monad-Fix.html