On this page
numpy.full_like
numpy.full_like(a, fill_value, dtype=None, order='K', subok=True)[source]- 
    
Return a full array with the same shape and type as a given array.
Parameters: - 
           
a : array_like - 
           
The shape and data-type of
adefine these same attributes of the returned array. - 
           
fill_value : scalar - 
           
Fill value.
 - 
           
dtype : data-type, optional - 
           
Overrides the data type of the result.
 - 
           
order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional - 
           
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if
ais Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofaas closely as possible. - 
           
subok : bool, optional. - 
           
If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.
 
Returns: - 
           
out : ndarray - 
           
Array of
fill_valuewith the same shape and type asa. 
See also
empty_like- Return an empty array with shape and type of input.
 ones_like- Return an array of ones with shape and type of input.
 zeros_like- Return an array of zeros with shape and type of input.
 full- Return a new array of given shape filled with value.
 
Examples
>>> x = np.arange(6, dtype=int) >>> np.full_like(x, 1) array([1, 1, 1, 1, 1, 1]) >>> np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0]) >>> np.full_like(x, 0.1, dtype=np.double) array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) >>> np.full_like(x, np.nan, dtype=np.double) array([ nan, nan, nan, nan, nan, nan])>>> y = np.arange(6, dtype=np.double) >>> np.full_like(y, 0.1) array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.full_like.html