On this page
numpy.zeros_like
numpy.zeros_like(a, dtype=None, order='K', subok=True)[source]- 
    
Return an array of zeros with the same shape and type as a given array.
Parameters: - 
           
a : array_like - 
           
The shape and data-type of
adefine these same attributes of the returned array. - 
           
dtype : data-type, optional - 
           
Overrides the data type of the result.
New in version 1.6.0.
 - 
           
order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional - 
           
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if
ais Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofaas closely as possible.New in version 1.6.0.
 - 
           
subok : bool, optional. - 
           
If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.
 
Returns: - 
           
out : ndarray - 
           
Array of zeros with the same shape and type as
a. 
See also
empty_like- Return an empty array with shape and type of input.
 ones_like- Return an array of ones with shape and type of input.
 full_like- Return a new array with shape of input filled with value.
 zeros- Return a new array setting values to zero.
 
Examples
>>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> np.zeros_like(x) array([[0, 0, 0], [0, 0, 0]])>>> y = np.arange(3, dtype=float) >>> y array([ 0., 1., 2.]) >>> np.zeros_like(y) array([ 0., 0., 0.]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.zeros_like.html