On this page
numpy.log
numpy.log(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'log'>-
Natural logarithm, element-wise.
The natural logarithm
logis the inverse of the exponential function, so thatlog(exp(x)) = x. The natural logarithm is logarithm in basee.Parameters: -
x : array_like -
Input value.
-
out : ndarray, None, or tuple of ndarray and None, optional -
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. -
where : array_like, optional -
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
- **kwargs
-
For other keyword-only arguments, see the ufunc docs.
Returns: -
y : ndarray -
The natural logarithm of
x, element-wise. This is a scalar ifxis a scalar.
Notes
Logarithm is a multivalued function: for each
xthere is an infinite number ofzsuch thatexp(z) = x. The convention is to return thezwhose imaginary part lies in[-pi, pi].For real-valued input data types,
logalways returns real output. For each value that cannot be expressed as a real number or infinity, it yieldsnanand sets theinvalidfloating point error flag.For complex-valued input,
logis a complex analytical function that has a branch cut[-inf, 0]and is continuous from above on it.loghandles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.References
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ [2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm Examples
>>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.log.html