On this page
numpy.log2
numpy.log2(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'log2'>-
Base-2 logarithm of
x.Parameters: -
x : array_like -
Input values.
-
out : ndarray, None, or tuple of ndarray and None, optional -
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. -
where : array_like, optional -
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
- **kwargs
-
For other keyword-only arguments, see the ufunc docs.
Returns: -
y : ndarray -
Base-2 logarithm of
x. This is a scalar ifxis a scalar.
Notes
New in version 1.3.0.
Logarithm is a multivalued function: for each
xthere is an infinite number ofzsuch that2**z = x. The convention is to return thezwhose imaginary part lies in[-pi, pi].For real-valued input data types,
log2always returns real output. For each value that cannot be expressed as a real number or infinity, it yieldsnanand sets theinvalidfloating point error flag.For complex-valued input,
log2is a complex analytical function that has a branch cut[-inf, 0]and is continuous from above on it.log2handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.Examples
>>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.])>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.log2.html