On this page
numpy.arange
numpy.arange([start, ]stop, [step, ]dtype=None)-
Return evenly spaced values within a given interval.
Values are generated within the half-open interval
[start, stop)(in other words, the interval includingstartbut excludingstop). For integer arguments the function is equivalent to the Python built-inrangefunction, but returns an ndarray rather than a list.When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use
numpy.linspacefor these cases.Parameters: -
start : number, optional -
Start of interval. The interval includes this value. The default start value is 0.
-
stop : number -
End of interval. The interval does not include this value, except in some cases where
stepis not an integer and floating point round-off affects the length ofout. -
step : number, optional -
Spacing between values. For any output
out, this is the distance between two adjacent values,out[i+1] - out[i]. The default step size is 1. Ifstepis specified as a position argument,startmust also be given. -
dtype : dtype -
The type of the output array. If
dtypeis not given, infer the data type from the other input arguments.
Returns: -
arange : ndarray -
Array of evenly spaced values.
For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow, this rule may result in the last element ofoutbeing greater thanstop.
See also
Examples
>>> np.arange(3) array([0, 1, 2]) >>> np.arange(3.0) array([ 0., 1., 2.]) >>> np.arange(3,7) array([3, 4, 5, 6]) >>> np.arange(3,7,2) array([3, 5]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.arange.html