On this page
numpy.fft.hfft
numpy.fft.hfft(a, n=None, axis=-1, norm=None)[source]-
Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.
Parameters: -
a : array_like -
The input array.
-
n : int, optional -
Length of the transformed axis of the output. For
noutput points,n//2 + 1input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. Ifnis not given, it is determined from the length of the input along the axis specified byaxis. -
axis : int, optional -
Axis over which to compute the FFT. If not given, the last axis is used.
-
norm : {None, “ortho”}, optional -
Normalization mode (see
numpy.fft). Default is None.New in version 1.10.0.
Returns: -
out : ndarray -
The truncated or zero-padded input, transformed along the axis indicated by
axis, or the last one ifaxisis not specified. The length of the transformed axis isn, or, ifnis not given,2*m - 2wheremis the length of the transformed axis of the input. To get an odd number of output points,nmust be specified, for instance as2*m - 1in the typical case,
Raises: - IndexError
-
If
axisis larger than the last axis ofa.
Notes
hfft/ihfftare a pair analogous torfft/irfft, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it’shfftfor which you must supply the length of the result if it is to be odd.- even:
ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error, - odd:
ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.
Examples
>>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary >>> np.fft.hfft(signal[:4]) # Input first half of signal array([15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([15., -4., 0., -1., 0., -4.])>>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, -0.+0.j], # may vary [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.fft.hfft.html