On this page
numpy.fft.ihfft
numpy.fft.ihfft(a, n=None, axis=-1, norm=None)[source]-
Compute the inverse FFT of a signal that has Hermitian symmetry.
Parameters: -
a : array_like -
Input array.
-
n : int, optional -
Length of the inverse FFT, the number of points along transformation axis in the input to use. If
nis smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. Ifnis not given, the length of the input along the axis specified byaxisis used. -
axis : int, optional -
Axis over which to compute the inverse FFT. If not given, the last axis is used.
-
norm : {None, “ortho”}, optional -
Normalization mode (see
numpy.fft). Default is None.New in version 1.10.0.
Returns: -
out : complex ndarray -
The truncated or zero-padded input, transformed along the axis indicated by
axis, or the last one ifaxisis not specified. The length of the transformed axis isn//2 + 1.
Notes
hfft/ihfftare a pair analogous torfft/irfft, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it’shfftfor which you must supply the length of the result if it is to be odd:- even:
ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error, - odd:
ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.
Examples
>>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.fft.ihfft.html