On this page
numpy.ma.masked_object
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]-
Mask the array
xwhere the data are exactly equal to value.This function is similar to
masked_values, but only suitable for object arrays: for floating point, usemasked_valuesinstead.Parameters: -
x : array_like -
Array to mask
-
value : object -
Comparison value
-
copy : {True, False}, optional -
Whether to return a copy of
x. -
shrink : {True, False}, optional -
Whether to collapse a mask full of False to nomask
Returns: -
result : MaskedArray -
The result of masking
xwhere equal tovalue.
See also
masked_where- Mask where a condition is met.
masked_equal- Mask where equal to a given value (integers).
masked_values- Mask using floating point equality.
Examples
>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)Note that
maskis set tonomaskif possible.>>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.masked_object.html