On this page
numpy.linspace
- numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)[source]
- 
    Return evenly spaced numbers over a specified interval. Returns numevenly spaced samples, calculated over the interval [start,stop].The endpoint of the interval can optionally be excluded. Changed in version 1.16.0: Non-scalar startandstopare now supported.- Parameters
- 
      - startarray_like
- 
        The starting value of the sequence. 
- stoparray_like
- 
        The end value of the sequence, unless endpointis set to False. In that case, the sequence consists of all but the last ofnum + 1evenly spaced samples, so thatstopis excluded. Note that the step size changes whenendpointis False.
- numint, optional
- 
        Number of samples to generate. Default is 50. Must be non-negative. 
- endpointbool, optional
- 
        If True, stopis the last sample. Otherwise, it is not included. Default is True.
- retstepbool, optional
- 
        If True, return ( samples,step), wherestepis the spacing between samples.
- dtypedtype, optional
- 
        The type of the output array. If dtypeis not given, infer the data type from the other input arguments.New in version 1.9.0. 
- axisint, optional
- 
        The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. New in version 1.16.0. 
 
- Returns
- 
      - samplesndarray
- 
        There are numequally spaced samples in the closed interval[start, stop]or the half-open interval[start, stop)(depending on whetherendpointis True or False).
- stepfloat, optional
- 
        Only returned if retstepis TrueSize of spacing between samples. 
 
 See also Examples>>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.linspace.html