On this page
numpy.logspace
- numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)[source]
- 
    Return numbers spaced evenly on a log scale. In linear space, the sequence starts at base ** start(baseto the power ofstart) and ends withbase ** stop(seeendpointbelow).Changed in version 1.16.0: Non-scalar startandstopare now supported.- Parameters
- 
      - startarray_like
- 
        base ** startis the starting value of the sequence.
- stoparray_like
- 
        base ** stopis the final value of the sequence, unlessendpointis False. In that case,num + 1values are spaced over the interval in log-space, of which all but the last (a sequence of lengthnum) are returned.
- numinteger, optional
- 
        Number of samples to generate. Default is 50. 
- endpointboolean, optional
- 
        If true, stopis the last sample. Otherwise, it is not included. Default is True.
- basefloat, optional
- 
        The base of the log space. The step size between the elements in ln(samples) / ln(base)(orlog_base(samples)) is uniform. Default is 10.0.
- dtypedtype
- 
        The type of the output array. If dtypeis not given, infer the data type from the other input arguments.
- axisint, optional
- 
        The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. New in version 1.16.0. 
 
- Returns
- 
      - samplesndarray
- 
        numsamples, equally spaced on a log scale.
 
 See also - arange
- 
       Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. 
- linspace
- 
       Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. 
- geomspace
- 
       Similar to logspace, but with endpoints specified directly. 
 NotesLogspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... >>> power(base, y).astype(dtype) ...Examples>>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([4. , 5.0396842 , 6.34960421, 8. ])Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.logspace.html