On this page
numpy.ma.mask_rowcols
- numpy.ma.mask_rowcols(a, axis=None)[source]
- 
    Mask rows and/or columns of a 2D array that contain masked values. Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axisparameter.- If axisis None, rows and columns are masked.
- If axisis 0, only rows are masked.
- If axisis 1 or -1, only columns are masked.
 - Parameters
- 
      - aarray_like, MaskedArray
- 
        The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with maskset tonomask(False). Must be a 2D array.
- axisint, optional
- 
        Axis along which to perform the operation. If None, applies to a flattened version of the array. 
 
- Returns
- 
      - aMaskedArray
- 
        A modified version of the input array, masked depending on the value of the axisparameter.
 
- Raises
- 
      - NotImplementedError
- 
        If input array ais not 2D.
 
 See also - mask_rows
- 
       Mask rows of a 2D array that contain masked values. 
- mask_cols
- 
       Mask cols of a 2D array that contain masked values. 
- masked_where
- 
       Mask where a condition is met. 
 NotesThe input array’s mask is modified by this function. Examples>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1)
- If 
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.mask_rowcols.html