On this page
numpy.ma.masked_where
- numpy.ma.masked_where(condition, a, copy=True)[source]
- 
    Mask an array where a condition is met. Return aas an array masked whereconditionis True. Any masked values ofaorconditionare also masked in the output.- Parameters
- 
      - conditionarray_like
- 
        Masking condition. When conditiontests floating point values for equality, consider usingmasked_valuesinstead.
- aarray_like
- 
        Array to mask. 
- copybool
- 
        If True (default) make a copy of ain the result. If False modifyain place and return a view.
 
- Returns
- 
      - resultMaskedArray
- 
        The result of masking awhereconditionis True.
 
 See also - masked_values
- 
       Mask using floating point equality. 
- masked_equal
- 
       Mask where equal to a given value. 
- masked_not_equal
- 
       Mask where notequal to a given value.
- masked_less_equal
- 
       Mask where less than or equal to a given value. 
- masked_greater_equal
- 
       Mask where greater than or equal to a given value. 
- masked_less
- 
       Mask where less than a given value. 
- masked_greater
- 
       Mask where greater than a given value. 
- masked_inside
- 
       Mask inside a given interval. 
- masked_outside
- 
       Mask outside a given interval. 
- masked_invalid
- 
       Mask invalid values (NaNs or infs). 
 Examples>>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_where(a <= 2, a) masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999)Mask array bconditional ona.>>> b = ['a', 'b', 'c', 'd'] >>> ma.masked_where(a == 2, b) masked_array(data=['a', 'b', --, 'd'], mask=[False, False, True, False], fill_value='N/A', dtype='<U1')Effect of the copyargument.>>> c = ma.masked_where(a <= 2, a) >>> c masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([0, 1, 2, 3]) >>> c = ma.masked_where(a <= 2, a, copy=False) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([99, 1, 2, 3])When conditionoracontain masked values.>>> a = np.arange(4) >>> a = ma.masked_where(a == 2, a) >>> a masked_array(data=[0, 1, --, 3], mask=[False, False, True, False], fill_value=999999) >>> b = np.arange(4) >>> b = ma.masked_where(b == 0, b) >>> b masked_array(data=[--, 1, 2, 3], mask=[ True, False, False, False], fill_value=999999) >>> ma.masked_where(a == 3, b) masked_array(data=[--, 1, --, --], mask=[ True, False, True, True], fill_value=999999)
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.masked_where.html