On this page
numpy.ma.masked_values
- numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source]
- 
    Mask using floating point equality. Return a MaskedArray, masked where the data in array xare approximately equal tovalue, determined usingisclose. The default tolerances formasked_valuesare the same as those forisclose.For integer types, exact equality is used, in the same way as masked_equal.The fill_value is set to valueand the mask is set tonomaskif possible.- Parameters
- 
      - xarray_like
- 
        Array to mask. 
- valuefloat
- 
        Masking value. 
- rtol, atolfloat, optional
- 
        Tolerance parameters passed on to isclose
- copybool, optional
- 
        Whether to return a copy of x.
- shrinkbool, optional
- 
        Whether to collapse a mask full of False to nomask.
 
- Returns
- 
      - resultMaskedArray
- 
        The result of masking xwhere approximately equal tovalue.
 
 See also - masked_where
- 
       Mask where a condition is met. 
- masked_equal
- 
       Mask where equal to a given value (integers). 
 Examples>>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1)Note that maskis set tonomaskif possible.>>> ma.masked_values(x, 1.5) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=1.5)For integers, the fill value will be different in general to the result of masked_equal.>>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2)
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.masked_values.html