On this page
pandas.Series
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)[source]-
One-dimensional ndarray with axis labels (including time series).
Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).
Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.
Parameters: data : array-like, dict, or scalar value
Contains data stored in Series
Changed in version 0.23.0: If data is a dict, argument order is maintained for Python 3.6 and later.
index : array-like or Index (1d)
Values must be hashable and have the same length as
data. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, …, n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.dtype : numpy.dtype or None
If None, dtype will be inferred
copy : boolean, default False
Copy input data
Attributes
Treturn the transpose, which is by definition self asobjectReturn object Series which contains boxed values. atAccess a single value for a row/column label pair. axesReturn a list of the row axis labels basereturn the base object if the memory of the underlying data is shared blocks(DEPRECATED) Internal property, property synonym for as_blocks() datareturn the data pointer of the underlying data dtypereturn the dtype object of the underlying data dtypesreturn the dtype object of the underlying data flagsftypereturn if the data is sparse|dense ftypesreturn if the data is sparse|dense hasnansreturn if I have any nans; enables various perf speedups iatAccess a single value for a row/column pair by integer position. ilocPurely integer-location based indexing for selection by position. indexThe index (axis labels) of the Series. is_monotonicReturn boolean if values in the object are monotonic_increasing is_monotonic_decreasingReturn boolean if values in the object are monotonic_decreasing is_monotonic_increasingReturn boolean if values in the object are monotonic_increasing is_uniqueReturn boolean if values in the object are unique itemsizereturn the size of the dtype of the item of the underlying data ixA primarily label-location based indexer, with integer position fallback. locAccess a group of rows and columns by label(s) or a boolean array. nbytesreturn the number of bytes in the underlying data ndimreturn the number of dimensions of the underlying data, by definition 1 shapereturn a tuple of the shape of the underlying data sizereturn the number of elements in the underlying data stridesreturn the strides of the underlying data valuesReturn Series as ndarray or ndarray-like depending on the dtype empty imag is_copy name real Methods
abs()Return a Series/DataFrame with absolute numeric value of each element. add(other[, level, fill_value, axis])Addition of series and other, element-wise (binary operator add).add_prefix(prefix)Prefix labels with string prefix.add_suffix(suffix)Suffix labels with string suffix.agg(func[, axis])Aggregate using one or more operations over the specified axis. aggregate(func[, axis])Aggregate using one or more operations over the specified axis. align(other[, join, axis, level, copy, …])Align two objects on their axes with the specified join method for each axis Index all([axis, bool_only, skipna, level])Return whether all elements are True, potentially over an axis. any([axis, bool_only, skipna, level])Return whether any element is True over requested axis. append(to_append[, ignore_index, …])Concatenate two or more Series. apply(func[, convert_dtype, args])Invoke function on values of Series. argmax([axis, skipna])(DEPRECATED) .. deprecated:: 0.21.0 argmin([axis, skipna])(DEPRECATED) .. deprecated:: 0.21.0 argsort([axis, kind, order])Overrides ndarray.argsort. as_blocks([copy])(DEPRECATED) Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. as_matrix([columns])(DEPRECATED) Convert the frame to its Numpy-array representation. asfreq(freq[, method, how, normalize, …])Convert TimeSeries to specified frequency. asof(where[, subset])The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame) astype(dtype[, copy, errors])Cast a pandas object to a specified dtype dtype.at_time(time[, asof])Select values at particular time of day (e.g. autocorr([lag])Lag-N autocorrelation between(left, right[, inclusive])Return boolean Series equivalent to left <= series <= right. between_time(start_time, end_time[, …])Select values between particular times of the day (e.g., 9:00-9:30 AM). bfill([axis, inplace, limit, downcast])Synonym for DataFrame.fillna(method='bfill')bool()Return the bool of a single element PandasObject. catalias of pandas.core.arrays.categorical.CategoricalAccessorclip([lower, upper, axis, inplace])Trim values at input threshold(s). clip_lower(threshold[, axis, inplace])Return copy of the input with values below a threshold truncated. clip_upper(threshold[, axis, inplace])Return copy of input with values above given value(s) truncated. combine(other, func[, fill_value])Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other combine_first(other)Combine Series values, choosing the calling Series’s values first. compound([axis, skipna, level])Return the compound percentage of the values for the requested axis compress(condition, *args, **kwargs)Return selected slices of an array along given axis as a Series consolidate([inplace])(DEPRECATED) Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). convert_objects([convert_dates, …])(DEPRECATED) Attempt to infer better dtype for object columns. copy([deep])Make a copy of this object’s indices and data. corr(other[, method, min_periods])Compute correlation with otherSeries, excluding missing valuescount([level])Return number of non-NA/null observations in the Series cov(other[, min_periods])Compute covariance with Series, excluding missing values cummax([axis, skipna])Return cumulative maximum over a DataFrame or Series axis. cummin([axis, skipna])Return cumulative minimum over a DataFrame or Series axis. cumprod([axis, skipna])Return cumulative product over a DataFrame or Series axis. cumsum([axis, skipna])Return cumulative sum over a DataFrame or Series axis. describe([percentiles, include, exclude])Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaNvalues.diff([periods])First discrete difference of element. div(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator truediv).divide(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator truediv).divmod(other[, level, fill_value, axis])Integer division and modulo of series and other, element-wise (binary operator divmod).dot(other)Matrix multiplication with DataFrame or inner-product with Series objects. drop([labels, axis, index, columns, level, …])Return Series with specified index labels removed. drop_duplicates([keep, inplace])Return Series with duplicate values removed. dropna([axis, inplace])Return a new Series with missing values removed. dtalias of pandas.core.indexes.accessors.CombinedDatetimelikePropertiesduplicated([keep])Indicate duplicate Series values. eq(other[, level, fill_value, axis])Equal to of series and other, element-wise (binary operator eq).equals(other)Determines if two NDFrame objects contain the same elements. ewm([com, span, halflife, alpha, …])Provides exponential weighted functions expanding([min_periods, center, axis])Provides expanding transformations. factorize([sort, na_sentinel])Encode the object as an enumerated type or categorical variable. ffill([axis, inplace, limit, downcast])Synonym for DataFrame.fillna(method='ffill')fillna([value, method, axis, inplace, …])Fill NA/NaN values using the specified method filter([items, like, regex, axis])Subset rows or columns of dataframe according to labels in the specified index. first(offset)Convenience method for subsetting initial periods of time series data based on a date offset. first_valid_index()Return index for first non-NA/null value. floordiv(other[, level, fill_value, axis])Integer division of series and other, element-wise (binary operator floordiv).from_array(arr[, index, name, dtype, copy, …])Construct Series from array. from_csv(path[, sep, parse_dates, header, …])(DEPRECATED) Read CSV file. ge(other[, level, fill_value, axis])Greater than or equal to of series and other, element-wise (binary operator ge).get(key[, default])Get item from object for given key (DataFrame column, Panel slice, etc.). get_dtype_counts()Return counts of unique dtypes in this object. get_ftype_counts()(DEPRECATED) Return counts of unique ftypes in this object. get_value(label[, takeable])(DEPRECATED) Quickly retrieve single value at passed index label get_values()same as values (but handles sparseness conversions); is a view groupby([by, axis, level, as_index, sort, …])Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. gt(other[, level, fill_value, axis])Greater than of series and other, element-wise (binary operator gt).head([n])Return the first nrows.hist([by, ax, grid, xlabelsize, xrot, …])Draw histogram of the input series using matplotlib idxmax([axis, skipna])Return the row label of the maximum value. idxmin([axis, skipna])Return the row label of the minimum value. infer_objects()Attempt to infer better dtypes for object columns. interpolate([method, axis, limit, inplace, …])Interpolate values according to different methods. isin(values)Check whether valuesare contained in Series.isna()Detect missing values. isnull()Detect missing values. item()return the first element of the underlying data as a python scalar items()Lazily iterate over (index, value) tuples iteritems()Lazily iterate over (index, value) tuples keys()Alias for index kurt([axis, skipna, level, numeric_only])Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). kurtosis([axis, skipna, level, numeric_only])Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). last(offset)Convenience method for subsetting final periods of time series data based on a date offset. last_valid_index()Return index for last non-NA/null value. le(other[, level, fill_value, axis])Less than or equal to of series and other, element-wise (binary operator le).lt(other[, level, fill_value, axis])Less than of series and other, element-wise (binary operator lt).mad([axis, skipna, level])Return the mean absolute deviation of the values for the requested axis map(arg[, na_action])Map values of Series using input correspondence (a dict, Series, or function). mask(cond[, other, inplace, axis, level, …])Return an object of same shape as self and whose corresponding entries are from self where condis False and otherwise are fromother.max([axis, skipna, level, numeric_only])This method returns the maximum of the values in the object. mean([axis, skipna, level, numeric_only])Return the mean of the values for the requested axis median([axis, skipna, level, numeric_only])Return the median of the values for the requested axis memory_usage([index, deep])Return the memory usage of the Series. min([axis, skipna, level, numeric_only])This method returns the minimum of the values in the object. mod(other[, level, fill_value, axis])Modulo of series and other, element-wise (binary operator mod).mode()Return the mode(s) of the dataset. mul(other[, level, fill_value, axis])Multiplication of series and other, element-wise (binary operator mul).multiply(other[, level, fill_value, axis])Multiplication of series and other, element-wise (binary operator mul).ne(other[, level, fill_value, axis])Not equal to of series and other, element-wise (binary operator ne).nlargest([n, keep])Return the largest nelements.nonzero()Return the integer indices of the elements that are non-zero notna()Detect existing (non-missing) values. notnull()Detect existing (non-missing) values. nsmallest([n, keep])Return the smallest nelements.nunique([dropna])Return number of unique elements in the object. pct_change([periods, fill_method, limit, freq])Percentage change between the current and a prior element. pipe(func, *args, **kwargs)Apply func(self, *args, **kwargs) plotalias of pandas.plotting._core.SeriesPlotMethodspop(item)Return item and drop from frame. pow(other[, level, fill_value, axis])Exponential power of series and other, element-wise (binary operator pow).prod([axis, skipna, level, numeric_only, …])Return the product of the values for the requested axis product([axis, skipna, level, numeric_only, …])Return the product of the values for the requested axis ptp([axis, skipna, level, numeric_only])Returns the difference between the maximum value and the put(*args, **kwargs)Applies the putmethod to itsvaluesattribute if it has one.quantile([q, interpolation])Return value at the given quantile, a la numpy.percentile. radd(other[, level, fill_value, axis])Addition of series and other, element-wise (binary operator radd).rank([axis, method, numeric_only, …])Compute numerical data ranks (1 through n) along axis. ravel([order])Return the flattened underlying data as an ndarray rdiv(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator rtruediv).reindex([index])Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. reindex_axis(labels[, axis])(DEPRECATED) Conform Series to new index with optional filling logic. reindex_like(other[, method, copy, limit, …])Return an object with matching indices to myself. rename([index])Alter Series index labels or name rename_axis(mapper[, axis, copy, inplace])Alter the name of the index or columns. reorder_levels(order)Rearrange index levels using input order. repeat(repeats, *args, **kwargs)Repeat elements of an Series. replace([to_replace, value, inplace, limit, …])Replace values given in to_replacewithvalue.resample(rule[, how, axis, fill_method, …])Convenience method for frequency conversion and resampling of time series. reset_index([level, drop, name, inplace])Generate a new DataFrame or Series with the index reset. rfloordiv(other[, level, fill_value, axis])Integer division of series and other, element-wise (binary operator rfloordiv).rmod(other[, level, fill_value, axis])Modulo of series and other, element-wise (binary operator rmod).rmul(other[, level, fill_value, axis])Multiplication of series and other, element-wise (binary operator rmul).rolling(window[, min_periods, center, …])Provides rolling window calculations. round([decimals])Round each value in a Series to the given number of decimals. rpow(other[, level, fill_value, axis])Exponential power of series and other, element-wise (binary operator rpow).rsub(other[, level, fill_value, axis])Subtraction of series and other, element-wise (binary operator rsub).rtruediv(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator rtruediv).sample([n, frac, replace, weights, …])Return a random sample of items from an axis of object. searchsorted(value[, side, sorter])Find indices where elements should be inserted to maintain order. select(crit[, axis])(DEPRECATED) Return data corresponding to axis labels matching criteria sem([axis, skipna, level, ddof, numeric_only])Return unbiased standard error of the mean over requested axis. set_axis(labels[, axis, inplace])Assign desired index to given axis. set_value(label, value[, takeable])(DEPRECATED) Quickly set single value at passed label. shift([periods, freq, axis])Shift index by desired number of periods with an optional time freq skew([axis, skipna, level, numeric_only])Return unbiased skew over requested axis Normalized by N-1 slice_shift([periods, axis])Equivalent to shiftwithout copying data.sort_index([axis, level, ascending, …])Sort Series by index labels. sort_values([axis, ascending, inplace, …])Sort by the values. sortlevel([level, ascending, sort_remaining])(DEPRECATED) Sort Series with MultiIndex by chosen level. squeeze([axis])Squeeze length 1 dimensions. std([axis, skipna, level, ddof, numeric_only])Return sample standard deviation over requested axis. stralias of pandas.core.strings.StringMethodssub(other[, level, fill_value, axis])Subtraction of series and other, element-wise (binary operator sub).subtract(other[, level, fill_value, axis])Subtraction of series and other, element-wise (binary operator sub).sum([axis, skipna, level, numeric_only, …])Return the sum of the values for the requested axis swapaxes(axis1, axis2[, copy])Interchange axes and swap values axes appropriately swaplevel([i, j, copy])Swap levels i and j in a MultiIndex tail([n])Return the last nrows.take(indices[, axis, convert, is_copy])Return the elements in the given positional indices along an axis. to_clipboard([excel, sep])Copy object to the system clipboard. to_csv([path, index, sep, na_rep, …])Write Series to a comma-separated values (csv) file to_dense()Return dense representation of NDFrame (as opposed to sparse) to_dict([into])Convert Series to {label -> value} dict or dict-like object. to_excel(excel_writer[, sheet_name, na_rep, …])Write Series to an excel sheet to_frame([name])Convert Series to DataFrame to_hdf(path_or_buf, key, **kwargs)Write the contained data to an HDF5 file using HDFStore. to_json([path_or_buf, orient, date_format, …])Convert the object to a JSON string. to_latex([buf, columns, col_space, header, …])Render an object to a tabular environment table. to_msgpack([path_or_buf, encoding])msgpack (serialize) object to input file path to_period([freq, copy])Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) to_pickle(path[, compression, protocol])Pickle (serialize) object to file. to_sparse([kind, fill_value])Convert Series to SparseSeries to_sql(name, con[, schema, if_exists, …])Write records stored in a DataFrame to a SQL database. to_string([buf, na_rep, float_format, …])Render a string representation of the Series to_timestamp([freq, how, copy])Cast to datetimeindex of timestamps, at beginning of period to_xarray()Return an xarray object from the pandas object. tolist()Return a list of the values. transform(func, *args, **kwargs)Call function producing a like-indexed NDFrame and return a NDFrame with the transformed values transpose(*args, **kwargs)return the transpose, which is by definition self truediv(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator truediv).truncate([before, after, axis, copy])Truncate a Series or DataFrame before and after some index value. tshift([periods, freq, axis])Shift the time index, using the index’s frequency if available. tz_convert(tz[, axis, level, copy])Convert tz-aware axis to target time zone. tz_localize(tz[, axis, level, copy, ambiguous])Localize tz-naive TimeSeries to target time zone. unique()Return unique values of Series object. unstack([level, fill_value])Unstack, a.k.a. update(other)Modify Series in place using non-NA values from passed Series. valid([inplace])(DEPRECATED) Return Series without null values. value_counts([normalize, sort, ascending, …])Returns object containing counts of unique values. var([axis, skipna, level, ddof, numeric_only])Return unbiased variance over requested axis. view([dtype])Create a new view of the Series. where(cond[, other, inplace, axis, level, …])Return an object of same shape as self and whose corresponding entries are from self where condis True and otherwise are fromother.xs(key[, axis, level, drop_level])Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Series.html