On this page
pandas.Series.argmax
Series.argmax(self, axis=0, skipna=True, *args, **kwargs)
[source]-
Return the row label of the maximum value.
Deprecated since version 0.21.0.
The current behaviour of ‘Series.argmax’ is deprecated, use ‘idxmax’ instead. The behavior of ‘argmax’ will be corrected to return the positional maximum in the future. For now, use ‘series.values.argmax’ or ‘np.argmax(np.array(values))’ to get the position of the maximum row.
If multiple values equal the maximum, the first row label with that value is returned.
Parameters: -
skipna : bool, default True
-
Exclude NA/null values. If the entire Series is NA, the result will be NA.
-
axis : int, default 0
-
For compatibility with DataFrame.idxmax. Redundant for application on Series.
- *args, **kwargs
-
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Returns: - Index
-
Label of the maximum value.
Raises: - ValueError
-
If the Series is empty.
See also
numpy.argmax
- Return indices of the maximum values along the given axis.
DataFrame.idxmax
- Return index of first occurrence of maximum over requested axis.
Series.idxmin
- Return index label of the first occurrence of minimum of values.
Notes
This method is the Series version of
ndarray.argmax
. This method returns the label of the maximum, whilendarray.argmax
returns the position. To get the position, useseries.values.argmax()
.Examples
>>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64
>>> s.idxmax() 'C'
If
skipna
is False and there is an NA value in the data, the function returnsnan
.>>> s.idxmax(skipna=False) nan
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.argmax.html