On this page
pandas.Series.idxmin
Series.idxmin(self, axis=0, skipna=True, *args, **kwargs)
[source]-
Return the row label of the minimum value.
If multiple values equal the minimum, the first row label with that value is returned.
Parameters: -
skipna : bool, default True
-
Exclude NA/null values. If the entire Series is NA, the result will be NA.
-
axis : int, default 0
-
For compatibility with DataFrame.idxmin. Redundant for application on Series.
- *args, **kwargs
-
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Returns: - Index
-
Label of the minimum value.
Raises: - ValueError
-
If the Series is empty.
See also
numpy.argmin
- Return indices of the minimum values along the given axis.
DataFrame.idxmin
- Return index of first occurrence of minimum over requested axis.
Series.idxmax
- Return index label of the first occurrence of maximum of values.
Notes
This method is the Series version of
ndarray.argmin
. This method returns the label of the minimum, whilendarray.argmin
returns the position. To get the position, useseries.values.argmin()
.Examples
>>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64
>>> s.idxmin() 'A'
If
skipna
is False and there is an NA value in the data, the function returnsnan
.>>> s.idxmin(skipna=False) nan
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.idxmin.html