On this page
pandas.Series.idxmax
Series.idxmax(self, axis=0, skipna=True, *args, **kwargs)
[source]-
Return the row label of the maximum value.
If multiple values equal the maximum, the first row label with that value is returned.
Parameters: -
skipna : bool, default True
-
Exclude NA/null values. If the entire Series is NA, the result will be NA.
-
axis : int, default 0
-
For compatibility with DataFrame.idxmax. Redundant for application on Series.
- *args, **kwargs
-
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Returns: - Index
-
Label of the maximum value.
Raises: - ValueError
-
If the Series is empty.
See also
numpy.argmax
- Return indices of the maximum values along the given axis.
DataFrame.idxmax
- Return index of first occurrence of maximum over requested axis.
Series.idxmin
- Return index label of the first occurrence of minimum of values.
Notes
This method is the Series version of
ndarray.argmax
. This method returns the label of the maximum, whilendarray.argmax
returns the position. To get the position, useseries.values.argmax()
.Examples
>>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64
>>> s.idxmax() 'C'
If
skipna
is False and there is an NA value in the data, the function returnsnan
.>>> s.idxmax(skipna=False) nan
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.idxmax.html