On this page
pandas.core.window.expanding.Expanding.cov
- Expanding.cov(other=None, pairwise=None, ddof=1, numeric_only=False, **kwargs)[source]
- 
    Calculate the expanding sample covariance. - Parameters
- 
      - other:Series or DataFrame, optional
- 
        If not supplied then will default to self and produce pairwise output. 
- pairwise:bool, default None
- 
        If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. 
- ddof:int, default 1
- 
        Delta Degrees of Freedom. The divisor used in calculations is N - ddof, whereNrepresents the number of elements.
- numeric_only:bool, default False
- 
        Include only float, int, boolean columns. New in version 1.5.0. 
- **kwargs
- 
        For NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. 
 
- Returns
- 
      - Series or DataFrame
- 
        Return type is the same as the original object with np.float64dtype.
 
 See also - 
       pandas.Series.expanding
- 
       Calling expanding with Series data. 
- 
       pandas.DataFrame.expanding
- 
       Calling expanding with DataFrames. 
- 
       pandas.Series.cov
- 
       Aggregating cov for Series. 
- 
       pandas.DataFrame.cov
- 
       Aggregating cov for DataFrame. 
 
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
 https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.expanding.Expanding.cov.html