On this page
pandas.core.window.rolling.Rolling.sum
- Rolling.sum(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]
 - 
    
Calculate the rolling sum.
- Parameters
 - 
      
- numeric_only:bool, default False
 - 
        
Include only float, int, boolean columns.
New in version 1.5.0.
 - *args
 - 
        
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
 - engine:str, default None
 - 
        
'cython': Runs the operation through C-extensions from cython.'numba': Runs the operation through JIT compiled code from numba.None: Defaults to'cython'or globally settingcompute.use_numbaNew in version 1.3.0.
 - engine_kwargs:dict, default None
 - 
        
For
'cython'engine, there are no acceptedengine_kwargsFor
'numba'engine, the engine can acceptnopython,nogilandparalleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}New in version 1.3.0.
 - **kwargs
 - 
        
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
 
 - Returns
 - 
      
- Series or DataFrame
 - 
        
Return type is the same as the original object with
np.float64dtype. 
 
See also
- 
       
pandas.Series.rolling - 
       
Calling rolling with Series data.
 - 
       
pandas.DataFrame.rolling - 
       
Calling rolling with DataFrames.
 - 
       
pandas.Series.sum - 
       
Aggregating sum for Series.
 - 
       
pandas.DataFrame.sum - 
       
Aggregating sum for DataFrame.
 
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
>>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64>>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64>>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64For DataFrame, each sum is computed column-wise.
>>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25>>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
 https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.rolling.Rolling.sum.html