On this page
pandas.Series.drop
- Series.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]
-
Return Series with specified index labels removed.
Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.
- Parameters
-
- labels:single label or list-like
-
Index labels to drop.
- axis:{0 or ‘index’}
-
Unused. Parameter needed for compatibility with DataFrame.
- index:single label or list-like
-
Redundant for application on Series, but ‘index’ can be used instead of ‘labels’.
- columns:single label or list-like
-
No change is made to the Series; use ‘index’ or ‘labels’ instead.
- level:int or level name, optional
-
For MultiIndex, level for which the labels will be removed.
- inplace:bool, default False
-
If True, do operation inplace and return None.
- errors:{‘ignore’, ‘raise’}, default ‘raise’
-
If ‘ignore’, suppress error and only existing labels are dropped.
- Returns
-
- Series or None
-
Series with specified index labels removed or None if
inplace=True
.
- Raises
-
- KeyError
-
If none of the labels are found in the index.
See also
-
Series.reindex
-
Return only specified index labels of Series.
-
Series.dropna
-
Return series without null values.
-
Series.drop_duplicates
-
Return Series with duplicate values removed.
-
DataFrame.drop
-
Drop specified labels from rows or columns.
Examples
>>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64
Drop labels B en C
>>> s.drop(labels=['B', 'C']) A 0 dtype: int64
Drop 2nd level label in MultiIndex Series
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64
>>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.Series.drop.html