On this page
pandas.Series.prod
- Series.prod(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)[source]
-
Return the product of the values over the requested axis.
- Parameters
-
- axis:{index (0)}
-
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
- skipna:bool, default True
-
Exclude NA/null values when computing the result.
- level:int or level name, default None
-
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.
- numeric_only:bool, default None
-
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Deprecated since version 1.5.0: Specifying
numeric_only=Noneis deprecated. The default value will beFalsein a future version of pandas. - min_count:int, default 0
-
The required number of valid values to perform the operation. If fewer than
min_countnon-NA values are present the result will be NA. - **kwargs
-
Additional keyword arguments to be passed to the function.
- Returns
-
- scalar or Series (if level specified)
See also
-
Series.sum -
Return the sum.
-
Series.min -
Return the minimum.
-
Series.max -
Return the maximum.
-
Series.idxmin -
Return the index of the minimum.
-
Series.idxmax -
Return the index of the maximum.
-
DataFrame.sum -
Return the sum over the requested axis.
-
DataFrame.min -
Return the minimum over the requested axis.
-
DataFrame.max -
Return the maximum over the requested axis.
-
DataFrame.idxmin -
Return the index of the minimum over the requested axis.
-
DataFrame.idxmax -
Return the index of the maximum over the requested axis.
Examples
By default, the product of an empty or all-NA Series is
1>>> pd.Series([], dtype="float64").prod() 1.0This can be controlled with the
min_countparameter>>> pd.Series([], dtype="float64").prod(min_count=1) nanThanks to the
skipnaparameter,min_counthandles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0>>> pd.Series([np.nan]).prod(min_count=1) nan
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.Series.prod.html