On this page
Surface normal estimation on organized data using integral images. More...
#include <pcl/features/integral_image_normal.h>
Public Types |
|
enum | BorderPolicy { BORDER_POLICY_IGNORE , BORDER_POLICY_MIRROR } |
Different types of border handling. More... |
|
enum | NormalEstimationMethod { COVARIANCE_MATRIX , AVERAGE_3D_GRADIENT , AVERAGE_DEPTH_CHANGE , SIMPLE_3D_GRADIENT } |
Different normal estimation methods. More... |
|
using | Ptr = shared_ptr< IntegralImageNormalEstimation< PointInT, PointOutT > > |
using | ConstPtr = shared_ptr< const IntegralImageNormalEstimation< PointInT, PointOutT > > |
using | PointCloudIn = typename Feature< PointInT, PointOutT >::PointCloudIn |
using | PointCloudOut = typename Feature< PointInT, PointOutT >::PointCloudOut |
using | BaseClass = PCLBase< PointInT > |
using | Ptr = shared_ptr< Feature< PointInT, PointOutT > > |
using | ConstPtr = shared_ptr< const Feature< PointInT, PointOutT > > |
using | KdTree = pcl::search::Search< PointInT > |
using | KdTreePtr = typename KdTree::Ptr |
using | PointCloudIn = pcl::PointCloud< PointInT > |
using | PointCloudInPtr = typename PointCloudIn::Ptr |
using | PointCloudInConstPtr = typename PointCloudIn::ConstPtr |
using | PointCloudOut = pcl::PointCloud< PointOutT > |
using | SearchMethod = std::function< int(std::size_t, double, pcl::Indices &, std::vector< float > &)> |
using | SearchMethodSurface = std::function< int(const PointCloudIn &cloud, std::size_t index, double, pcl::Indices &, std::vector< float > &)> |
using | PointCloud = pcl::PointCloud< PointInT > |
using | PointCloudPtr = typename PointCloud::Ptr |
using | PointCloudConstPtr = typename PointCloud::ConstPtr |
using | PointIndicesPtr = PointIndices::Ptr |
using | PointIndicesConstPtr = PointIndices::ConstPtr |
Public Member Functions |
|
IntegralImageNormalEstimation () | |
Constructor. More... |
|
~IntegralImageNormalEstimation () override | |
Destructor. More... |
|
void | setRectSize (const int width, const int height) |
Set the regions size which is considered for normal estimation. More... |
|
void | setBorderPolicy (const BorderPolicy border_policy) |
Sets the policy for handling borders. More... |
|
void | computePointNormal (const int pos_x, const int pos_y, const unsigned point_index, PointOutT &normal) |
Computes the normal at the specified position. More... |
|
void | computePointNormalMirror (const int pos_x, const int pos_y, const unsigned point_index, PointOutT &normal) |
Computes the normal at the specified position with mirroring for border handling. More... |
|
void | setMaxDepthChangeFactor (float max_depth_change_factor) |
The depth change threshold for computing object borders. More... |
|
void | setNormalSmoothingSize (float normal_smoothing_size) |
Set the normal smoothing size. More... |
|
void | setNormalEstimationMethod (NormalEstimationMethod normal_estimation_method) |
Set the normal estimation method. More... |
|
void | setDepthDependentSmoothing (bool use_depth_dependent_smoothing) |
Set whether to use depth depending smoothing or not. More... |
|
void | setInputCloud (const typename PointCloudIn::ConstPtr &cloud) override |
Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method) More... |
|
float * | getDistanceMap () |
Returns a pointer to the distance map which was computed internally. More... |
|
void | setViewPoint (float vpx, float vpy, float vpz) |
Set the viewpoint. More... |
|
void | getViewPoint (float &vpx, float &vpy, float &vpz) |
Get the viewpoint. More... |
|
void | useSensorOriginAsViewPoint () |
sets whether the sensor origin or a user given viewpoint should be used. More... |
|
Feature () | |
Empty constructor. More... |
|
void | setSearchSurface (const PointCloudInConstPtr &cloud) |
Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset. More... |
|
PointCloudInConstPtr | getSearchSurface () const |
Get a pointer to the surface point cloud dataset. More... |
|
void | setSearchMethod (const KdTreePtr &tree) |
Provide a pointer to the search object. More... |
|
KdTreePtr | getSearchMethod () const |
Get a pointer to the search method used. More... |
|
double | getSearchParameter () const |
Get the internal search parameter. More... |
|
void | setKSearch (int k) |
Set the number of k nearest neighbors to use for the feature estimation. More... |
|
int | getKSearch () const |
get the number of k nearest neighbors used for the feature estimation. More... |
|
void | setRadiusSearch (double radius) |
Set the sphere radius that is to be used for determining the nearest neighbors used for the feature estimation. More... |
|
double | getRadiusSearch () const |
Get the sphere radius used for determining the neighbors. More... |
|
void | compute (PointCloudOut &output) |
Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod () More... |
|
PCLBase () | |
Empty constructor. More... |
|
PCLBase (const PCLBase &base) | |
Copy constructor. More... |
|
virtual | ~PCLBase ()=default |
Destructor. More... |
|
virtual void | setInputCloud (const PointCloudConstPtr &cloud) |
Provide a pointer to the input dataset. More... |
|
PointCloudConstPtr const | getInputCloud () const |
Get a pointer to the input point cloud dataset. More... |
|
virtual void | setIndices (const IndicesPtr &indices) |
Provide a pointer to the vector of indices that represents the input data. More... |
|
virtual void | setIndices (const IndicesConstPtr &indices) |
Provide a pointer to the vector of indices that represents the input data. More... |
|
virtual void | setIndices (const PointIndicesConstPtr &indices) |
Provide a pointer to the vector of indices that represents the input data. More... |
|
virtual void | setIndices (std::size_t row_start, std::size_t col_start, std::size_t nb_rows, std::size_t nb_cols) |
Set the indices for the points laying within an interest region of the point cloud. More... |
|
IndicesPtr | getIndices () |
Get a pointer to the vector of indices used. More... |
|
IndicesConstPtr const | getIndices () const |
Get a pointer to the vector of indices used. More... |
|
const PointInT & | operator[] (std::size_t pos) const |
Override PointCloud operator[] to shorten code. More... |
|
Protected Member Functions |
|
void | computeFeature (PointCloudOut &output) override |
Computes the normal for the complete cloud or only indices_ if provided. More... |
|
void | computeFeatureFull (const float *distance_map, const float &bad_point, PointCloudOut &output) |
Computes the normal for the complete cloud. More... |
|
void | computeFeaturePart (const float *distance_map, const float &bad_point, PointCloudOut &output) |
Computes the normal for part of the cloud specified by indices_. More... |
|
void | initData () |
Initialize the data structures, based on the normal estimation method chosen. More... |
|
const std::string & | getClassName () const |
Get a string representation of the name of this class. More... |
|
virtual bool | deinitCompute () |
This method should get called after ending the actual computation. More... |
|
int | searchForNeighbors (std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More... |
|
int | searchForNeighbors (const PointCloudIn &cloud, std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More... |
|
bool | initCompute () |
This method should get called before starting the actual computation. More... |
|
bool | deinitCompute () |
This method should get called after finishing the actual computation. More... |
|
Additional Inherited Members |
|
std::string | feature_name_ |
The feature name. More... |
|
SearchMethodSurface | search_method_surface_ |
The search method template for points. More... |
|
PointCloudInConstPtr | surface_ |
An input point cloud describing the surface that is to be used for nearest neighbors estimation. More... |
|
KdTreePtr | tree_ |
A pointer to the spatial search object. More... |
|
double | search_parameter_ |
The actual search parameter (from either search_radius_ or k_). More... |
|
double | search_radius_ |
The nearest neighbors search radius for each point. More... |
|
int | k_ |
The number of K nearest neighbors to use for each point. More... |
|
bool | fake_surface_ |
If no surface is given, we use the input PointCloud as the surface. More... |
|
PointCloudConstPtr | input_ |
The input point cloud dataset. More... |
|
IndicesPtr | indices_ |
A pointer to the vector of point indices to use. More... |
|
bool | use_indices_ |
Set to true if point indices are used. More... |
|
bool | fake_indices_ |
If no set of indices are given, we construct a set of fake indices that mimic the input PointCloud. More... |
|
Detailed Description
template<typename PointInT, typename PointOutT>
class pcl::IntegralImageNormalEstimation< PointInT, PointOutT >
Surface normal estimation on organized data using integral images.
For detailed information about this method see:
S. Holzer and R. B. Rusu and M. Dixon and S. Gedikli and N. Navab,
Adaptive Neighborhood Selection for Real-Time Surface Normal Estimation
from Organized Point Cloud Data Using Integral Images, IROS 2012.
D. Holz, S. Holzer, R. B. Rusu, and S. Behnke (2011, July).
Real-Time Plane Segmentation using RGB-D Cameras. In Proceedings of
the 15th RoboCup International Symposium, Istanbul, Turkey.
http://www.ais.uni-bonn.de/~holz/papers/holz_2011_robocup.pdf
Definition at line 65 of file integral_image_normal.h.
Member Typedef Documentation
ConstPtr
using pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::ConstPtr = shared_ptr<const IntegralImageNormalEstimation<PointInT, PointOutT> > |
Definition at line 75 of file integral_image_normal.h.
PointCloudIn
using pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn |
Definition at line 103 of file integral_image_normal.h.
PointCloudOut
using pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut |
Definition at line 104 of file integral_image_normal.h.
Ptr
using pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::Ptr = shared_ptr<IntegralImageNormalEstimation<PointInT, PointOutT> > |
Definition at line 74 of file integral_image_normal.h.
Member Enumeration Documentation
BorderPolicy
Different types of border handling.
Definition at line 78 of file integral_image_normal.h.
NormalEstimationMethod
Different normal estimation methods.
- COVARIANCE_MATRIX - creates 9 integral images to compute the normal for a specific point from the covariance matrix of its local neighborhood.
- AVERAGE_3D_GRADIENT - creates 6 integral images to compute smoothed versions of horizontal and vertical 3D gradients and computes the normals using the cross-product between these two gradients.
- AVERAGE_DEPTH_CHANGE - creates only a single integral image and computes the normals from the average depth changes.
Definition at line 95 of file integral_image_normal.h.
Constructor & Destructor Documentation
IntegralImageNormalEstimation()
|
inline |
Constructor.
Definition at line 107 of file integral_image_normal.h.
References pcl::Feature< PointInT, PointOutT >::feature_name_, pcl::Feature< PointInT, PointOutT >::k_, and pcl::Feature< PointInT, PointOutT >::tree_.
~IntegralImageNormalEstimation()
|
override |
Destructor.
Definition at line 45 of file integral_image_normal.hpp.
Member Function Documentation
computeFeature()
|
overrideprotectedvirtual |
Computes the normal for the complete cloud or only indices_ if provided.
- Parameters
-
[out] output the resultant normals
Implements pcl::Feature< PointInT, PointOutT >.
Definition at line 729 of file integral_image_normal.hpp.
References pcl::PointCloud< PointT >::sensor_orientation_, and pcl::PointCloud< PointT >::sensor_origin_.
computeFeatureFull()
|
protected |
Computes the normal for the complete cloud.
- Parameters
-
[in] distance_map distance map [in] bad_point constant given to invalid normal components [out] output the resultant normals
Definition at line 836 of file integral_image_normal.hpp.
References pcl::computePointNormal(), pcl::PointCloud< PointT >::is_dense, and pcl::PointCloud< PointT >::width.
computeFeaturePart()
|
protected |
Computes the normal for part of the cloud specified by indices_.
- Parameters
-
[in] distance_map distance map [in] bad_point constant given to invalid normal components [out] output the resultant normals
Definition at line 1023 of file integral_image_normal.hpp.
References pcl::computePointNormal(), pcl::PointCloud< PointT >::is_dense, and pcl::PointCloud< PointT >::width.
computePointNormal()
void pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::computePointNormal | ( | const int | pos_x, |
const int | pos_y, | ||
const unsigned | point_index, | ||
PointOutT & | normal | ||
) |
Computes the normal at the specified position.
- Parameters
-
[in] pos_x x position (pixel) [in] pos_y y position (pixel) [in] point_index the position index of the point [out] normal the output estimated normal
Definition at line 205 of file integral_image_normal.hpp.
References pcl::eigen33(), pcl::flipNormalTowardsViewpoint(), pcl::IntegralImage2D< DataType, Dimension >::getFirstOrderSum(), and pcl::IntegralImage2D< DataType, Dimension >::getSecondOrderSum().
computePointNormalMirror()
void pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::computePointNormalMirror | ( | const int | pos_x, |
const int | pos_y, | ||
const unsigned | point_index, | ||
PointOutT & | normal | ||
) |
Computes the normal at the specified position with mirroring for border handling.
- Parameters
-
[in] pos_x x position (pixel) [in] pos_y y position (pixel) [in] point_index the position index of the point [out] normal the output estimated normal
Definition at line 460 of file integral_image_normal.hpp.
References pcl::eigen33(), pcl::flipNormalTowardsViewpoint(), and pcl::IntegralImage2D< DataType, Dimension >::getFirstOrderSumSE().
getDistanceMap()
|
inline |
Returns a pointer to the distance map which was computed internally.
Definition at line 257 of file integral_image_normal.h.
getViewPoint()
|
inline |
Get the viewpoint.
- Parameters
-
[out] vpx x-coordinate of the view point [out] vpy y-coordinate of the view point [out] vpz z-coordinate of the view point
- Note
- this method returns the currently used viewpoint for normal flipping. If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates. If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
Definition at line 285 of file integral_image_normal.h.
initData()
|
protected |
Initialize the data structures, based on the normal estimation method chosen.
Definition at line 55 of file integral_image_normal.hpp.
Referenced by pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::setInputCloud().
setBorderPolicy()
|
inline |
Sets the policy for handling borders.
- Parameters
-
[in] border_policy the border policy.
Definition at line 152 of file integral_image_normal.h.
setDepthDependentSmoothing()
|
inline |
Set whether to use depth depending smoothing or not.
- Parameters
-
[in] use_depth_dependent_smoothing decides whether the smoothing is depth dependent
Definition at line 223 of file integral_image_normal.h.
setInputCloud()
|
inlineoverride |
Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
- Parameters
-
[in] cloud the const boost shared pointer to a PointCloud message
Definition at line 232 of file integral_image_normal.h.
References pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::initData(), and pcl::PCLBase< PointInT >::input_.
Referenced by pcl::HarrisKeypoint6D< PointInT, PointOutT, NormalT >::detectKeypoints(), pcl::HarrisKeypoint3D< PointInT, PointOutT, NormalT >::initCompute(), pcl::ISSKeypoint3D< PointInT, PointOutT, NormalT >::initCompute(), pcl::SUSANKeypoint< PointInT, PointOutT, NormalT, IntensityT >::initCompute(), and pcl::TrajkovicKeypoint3D< PointInT, PointOutT, NormalT >::initCompute().
setMaxDepthChangeFactor()
|
inline |
The depth change threshold for computing object borders.
- Parameters
-
[in] max_depth_change_factor the depth change threshold for computing object borders based on depth changes
Definition at line 180 of file integral_image_normal.h.
setNormalEstimationMethod()
|
inline |
Set the normal estimation method.
The current implemented algorithms are:
- COVARIANCE_MATRIX - creates 9 integral images to compute the normal for a specific point from the covariance matrix of its local neighborhood.
- AVERAGE_3D_GRADIENT - creates 6 integral images to compute smoothed versions of horizontal and vertical 3D gradients and computes the normals using the cross-product between these two gradients.
- AVERAGE_DEPTH_CHANGE - creates only a single integral image and computes the normals from the average depth changes.
- Parameters
-
[in] normal_estimation_method the method used for normal estimation
Definition at line 214 of file integral_image_normal.h.
Referenced by pcl::HarrisKeypoint6D< PointInT, PointOutT, NormalT >::detectKeypoints(), pcl::HarrisKeypoint3D< PointInT, PointOutT, NormalT >::initCompute(), pcl::ISSKeypoint3D< PointInT, PointOutT, NormalT >::initCompute(), pcl::SUSANKeypoint< PointInT, PointOutT, NormalT, IntensityT >::initCompute(), and pcl::TrajkovicKeypoint3D< PointInT, PointOutT, NormalT >::initCompute().
setNormalSmoothingSize()
|
inline |
Set the normal smoothing size.
- Parameters
-
[in] normal_smoothing_size factor which influences the size of the area used to smooth normals (depth dependent if useDepthDependentSmoothing is true)
Definition at line 190 of file integral_image_normal.h.
References pcl::Feature< PointInT, PointOutT >::feature_name_.
Referenced by pcl::HarrisKeypoint6D< PointInT, PointOutT, NormalT >::detectKeypoints(), pcl::HarrisKeypoint3D< PointInT, PointOutT, NormalT >::initCompute(), pcl::ISSKeypoint3D< PointInT, PointOutT, NormalT >::initCompute(), pcl::SUSANKeypoint< PointInT, PointOutT, NormalT, IntensityT >::initCompute(), and pcl::TrajkovicKeypoint3D< PointInT, PointOutT, NormalT >::initCompute().
setRectSize()
void pcl::IntegralImageNormalEstimation< PointInT, PointOutT >::setRectSize | ( | const int | width, |
const int | height | ||
) |
Set the regions size which is considered for normal estimation.
- Parameters
-
[in] width the width of the search rectangle [in] height the height of the search rectangle
Definition at line 92 of file integral_image_normal.hpp.
setViewPoint()
|
inline |
Set the viewpoint.
- Parameters
-
vpx the X coordinate of the viewpoint vpy the Y coordinate of the viewpoint vpz the Z coordinate of the viewpoint
Definition at line 268 of file integral_image_normal.h.
useSensorOriginAsViewPoint()
|
inline |
sets whether the sensor origin or a user given viewpoint should be used.
After this method, the normal estimation method uses the sensor origin of the input cloud. to use a user defined view point, use the method setViewPoint
Definition at line 297 of file integral_image_normal.h.
References pcl::PCLBase< PointInT >::input_.
The documentation for this class was generated from the following files:
- pcl/features/integral_image_normal.h
- pcl/features/impl/integral_image_normal.hpp
© 2009–2012, Willow Garage, Inc.
© 2012–, Open Perception, Inc.
Licensed under the BSD License.
https://pointclouds.org/documentation/classpcl_1_1_integral_image_normal_estimation.html