SampleConsensusModelPlane defines a model for 3D plane segmentation. More...
#include </__w/1/s/cuda/sample_consensus/include/pcl/cuda/sample_consensus/sac_model_plane.h>
|
|
SampleConsensusModelPlane (const PointCloudConstPtr &cloud) |
|
Constructor for base SampleConsensusModelPlane. More...
|
void |
getSamples (int &iterations, Indices &samples) |
|
Get 3 random non-collinear points as data samples and return them as point indices. More...
|
bool |
computeModelCoefficients (const Indices &samples, Coefficients &model_coefficients) |
|
Check whether the given index samples can form a valid plane model, compute the model coefficients from these samples and store them in model_coefficients. More...
|
bool |
generateModelHypotheses (Hypotheses &h, int max_iterations) |
virtual bool |
generateModelHypotheses (Hypotheses &h, Samples &s, int max_iterations) |
int |
selectWithinDistance (const Coefficients &model_coefficients, float threshold, IndicesPtr &inliers, IndicesPtr &inliers_stencil) |
|
Select all the points which respect the given model coefficients as inliers. More...
|
int |
selectWithinDistance (const Hypotheses &h, int idx, float threshold, IndicesPtr &inliers, IndicesPtr &inliers_stencil) |
int |
selectWithinDistance (Hypotheses &h, int idx, float threshold, IndicesPtr &inliers_stencil, float3 ¢roid) |
int |
countWithinDistance (const Coefficients &model_coefficients, float threshold) |
int |
countWithinDistance (const Hypotheses &h, int idx, float threshold) |
|
SampleConsensusModel (const PointCloudConstPtr &cloud) |
|
Constructor for base SampleConsensusModel. More...
|
virtual |
~SampleConsensusModel ()=default |
|
Destructor for base SampleConsensusModel. More...
|
virtual bool |
isSampleInlier (IndicesPtr &inliers_stencil, Samples &samples, unsigned int &i) |
int |
deleteIndices (const IndicesPtr &indices_stencil) |
int |
deleteIndices (const Hypotheses &h, int idx, IndicesPtr &inliers, const IndicesPtr &inliers_delete) |
virtual void |
setInputCloud (const PointCloudConstPtr &cloud) |
|
Provide a pointer to the input dataset. More...
|
PointCloudConstPtr |
getInputCloud () const |
|
Get a pointer to the input point cloud dataset. More...
|
IndicesPtr |
getIndices () const |
|
Get a pointer to the vector of indices used. More...
|
void |
setRadiusLimits (float min_radius, float max_radius) |
|
Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate a radius) More...
|
void |
getRadiusLimits (float &min_radius, float &max_radius) |
|
Get the minimum and maximum allowable radius limits for the model as set by the user. More...
|
shared_ptr< typename Storage< float4 >::type > |
getNormals () |
void |
setNormals (shared_ptr< typename Storage< float4 >::type > normals) |
template<template< typename > class Storage>
class pcl::cuda::SampleConsensusModelPlane< Storage >
SampleConsensusModelPlane defines a model for 3D plane segmentation.
Definition at line 80 of file sac_model_plane.h.
Coefficients
template<template< typename > class Storage>
ConstPtr
template<template< typename > class Storage>
Hypotheses
template<template< typename > class Storage>
Indices
template<template< typename > class Storage>
IndicesConstPtr
template<template< typename > class Storage>
IndicesPtr
template<template< typename > class Storage>
PointCloud
template<template< typename > class Storage>
PointCloudConstPtr
template<template< typename > class Storage>
PointCloudPtr
template<template< typename > class Storage>
Ptr
template<template< typename > class Storage>
Samples
template<template< typename > class Storage>
SampleConsensusModelPlane()
template<template< typename > class Storage>
computeModelCoefficients()
template<template< typename > class Storage>
Check whether the given index samples can form a valid plane model, compute the model coefficients from these samples and store them in model_coefficients.
The plane coefficients are: a, b, c, d (ax+by+cz+d=0)
-
Parameters
-
samples |
the point indices found as possible good candidates for creating a valid model |
model_coefficients |
the resultant model coefficients |
Implements pcl::cuda::SampleConsensusModel< Storage >.
countWithinDistance() [1/2]
template<template< typename > class Storage>
countWithinDistance() [2/2]
template<template< typename > class Storage>
generateModelHypotheses() [1/2]
template<template< typename > class Storage>
generateModelHypotheses() [2/2]
template<template< typename > class Storage>
getSamples()
template<template< typename > class Storage>
Get 3 random non-collinear points as data samples and return them as point indices.
-
Parameters
-
iterations |
the internal number of iterations used by SAC methods |
samples |
the resultant model samples |
-
Note
-
assumes unique points!
Implements pcl::cuda::SampleConsensusModel< Storage >.
selectWithinDistance() [1/3]
template<template< typename > class Storage>
Select all the points which respect the given model coefficients as inliers.
-
Parameters
-
model_coefficients |
the coefficients of a plane model that we need to compute distances to |
threshold |
a maximum admissible distance threshold for determining the inliers from the outliers |
inliers |
the resultant model inliers |
inliers_stencil |
|
Implements pcl::cuda::SampleConsensusModel< Storage >.
selectWithinDistance() [2/3]
template<template< typename > class Storage>
selectWithinDistance() [3/3]
template<template< typename > class Storage>
MAX_ITERATIONS_COLLINEAR
template<template< typename > class Storage>
The documentation for this class was generated from the following file: