On this page
StepLR
class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1, verbose=False)
[source]-
Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.
- Parameters
-
- optimizer (Optimizer) – Wrapped optimizer.
- step_size (int) – Period of learning rate decay.
- gamma (float) – Multiplicative factor of learning rate decay. Default: 0.1.
- last_epoch (int) – The index of last epoch. Default: -1.
- verbose (bool) – If
True
, prints a message to stdout for each update. Default:False
.
Example
>>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 60 >>> # lr = 0.0005 if 60 <= epoch < 90 >>> # ... >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step()
get_last_lr()
-
Return last computed learning rate by current scheduler.
load_state_dict(state_dict)
-
Loads the schedulers state.
- Parameters
-
state_dict (dict) – scheduler state. Should be an object returned from a call to
state_dict()
.
print_lr(is_verbose, group, lr, epoch=None)
-
Display the current learning rate.
state_dict()
-
Returns the state of the scheduler as a
dict
.It contains an entry for every variable in self.__dict__ which is not the optimizer.
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.optim.lr_scheduler.StepLR.html