On this page
class Integer
BigDecimal extends the native Integer class to provide the to_d method.
When you require the BigDecimal library in your application, this methodwill be available on Integer objects.
Add double dispatch to Integer
This class is the basis for the two concrete classes that hold whole numbers, Bignum and Fixnum.
Public Class Methods
# File lib/prime.rb, line 40
def Integer.each_prime(ubound, &block) # :yields: prime
Prime.each(ubound, &block)
end
Iterates the given block over all prime numbers.
See Prime
#each for more details.
# File lib/prime.rb, line 21
def Integer.from_prime_division(pd)
Prime.int_from_prime_division(pd)
end
Re-composes a prime factorization and returns the product.
See Prime#int_from_prime_division for more details.
Public Instance Methods
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%d out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_check_arity(argc, 0, 1);
break;
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
Returns a string containing the character represented by the int
's value according to encoding
.
65.chr #=> "A"
230.chr #=> "\346"
255.chr(Encoding::UTF_8) #=> "\303\277"
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
Returns 1.
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
Iterates the given block, passing decreasing values from int
down to and including limit
.
If no block is given, an Enumerator is returned instead.
5.downto(1) { |n| print n, ".. " }
print " Liftoff!\n"
#=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
static VALUE
int_even_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
Returns true
if int
is an even number.
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
Returns an array; [int.gcd(int2), int.lcm(int2)].
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
static VALUE
int_int_p(VALUE num)
{
return Qtrue;
}
Since int
is already an Integer, this always returns true
.
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_plus(num, INT2FIX(1));
}
return rb_funcall(num, '+', 1, INT2FIX(1));
}
Returns the Integer equal to int
+ 1, same as #next.
1.next #=> 2
(-1).next #=> 0
static VALUE
integer_numerator(VALUE self)
{
return self;
}
Returns self.
static VALUE
int_odd_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
Returns true
if int
is an odd number.
static VALUE
int_ord(VALUE num)
{
return num;
}
Returns the int
itself.
?a.ord #=> 97
This method is intended for compatibility to character constant in Ruby 1.9.
For example, ?a.ord returns 97 both in 1.8 and 1.9.
VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_minus(num, INT2FIX(1));
}
return rb_funcall(num, '-', 1, INT2FIX(1));
}
Returns the Integer equal to int
- 1.
1.pred #=> 0
(-1).pred #=> -2
# File lib/prime.rb, line 33
def prime?
Prime.prime?(self)
end
Returns true if self
is a prime number, else returns false.
# File lib/prime.rb, line 28
def prime_division(generator = Prime::Generator23.new)
Prime.prime_division(self, generator)
end
Returns the factorization of self
.
See Prime#prime_division for more details.
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_scan_args(argc, argv, "01", NULL);
return integer_to_r(self);
}
Returns the value as a rational. The optional argument eps is always ignored.
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
VALUE n;
int ndigits;
if (argc == 0) return num;
rb_scan_args(argc, argv, "1", &n);
ndigits = NUM2INT(n);
if (ndigits > 0) {
return rb_Float(num);
}
if (ndigits == 0) {
return num;
}
return int_round_0(num, ndigits);
}
Rounds int
to a given precision in decimal digits (default 0 digits).
Precision may be negative. Returns a floating point number when ndigits
is positive, self
for zero, and round down for negative.
1.round #=> 1
1.round(2) #=> 1.0
15.round(-1) #=> 20
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_plus(num, INT2FIX(1));
}
return rb_funcall(num, '+', 1, INT2FIX(1));
}
Returns the Integer equal to int
+ 1, same as #next.
1.next #=> 2
(-1).next #=> 0
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(rb_funcall(i, '<', 1, num))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
}
return num;
}
Iterates the given block int
times, passing in values from zero to int - 1
.
If no block is given, an Enumerator is returned instead.
5.times do |i|
print i, " "
end
#=> 0 1 2 3 4
# File ext/openssl/lib/openssl/bn.rb, line 41
def to_bn
OpenSSL::BN::new(self)
end
Casts an Integer as an OpenSSL::BN
See `man bn` for more info.
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 17
def to_d
BigDecimal(self)
end
Convert int
to a BigDecimal and return it.
require 'bigdecimal'
require 'bigdecimal/util'
42.to_d
# => #<BigDecimal:1008ef070,'0.42E2',9(36)>
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
Iterates the given block, passing in integer values from int
up to and including limit
.
If no block is given, an Enumerator is returned instead.
For example:
5.upto(10) { |i| print i, " " }
#=> 5 6 7 8 9 10
Ruby Core © 1993–2017 Yukihiro Matsumoto
Licensed under the Ruby License.
Ruby Standard Library © contributors
Licensed under their own licenses.