On this page
tf.data.IteratorSpec
Type specification for tf.data.Iterator.
Inherits From: TypeSpec
tf.data.IteratorSpec(
    element_spec
)
  For instance, tf.data.IteratorSpec can be used to define a tf.function that takes tf.data.Iterator as an input argument:
@tf.function(input_signature=[tf.data.IteratorSpec(
  tf.TensorSpec(shape=(), dtype=tf.int32, name=None))])
def square(iterator):
  x = iterator.get_next()
  return x * x
dataset = tf.data.Dataset.from_tensors(5)
iterator = iter(dataset)
print(square(iterator))
tf.Tensor(25, shape=(), dtype=int32)
  | Attributes | |
|---|---|
element_spec | 
      A nested structure of TypeSpec objects that represents the type specification of the iterator elements. | 
     
value_type | 
      The Python type for values that are compatible with this TypeSpec.  In particular, all values that are compatible with this TypeSpec must be an instance of this type.  | 
     
Methods
from_value
  
  @staticmethod
from_value(
    value
)
  is_compatible_with
  
  is_compatible_with(
    spec_or_value
)
  Returns true if spec_or_value is compatible with this TypeSpec.
most_specific_compatible_type
  
  most_specific_compatible_type(
    other
)
  Returns the most specific TypeSpec compatible with self and other.
| Args | |
|---|---|
other | 
      A TypeSpec. | 
     
| Raises | |
|---|---|
ValueError | 
      If there is no TypeSpec that is compatible with both self and other. | 
     
__eq__
  
  __eq__(
    other
)
  Return self==value.
__ne__
  
  __ne__(
    other
)
  Return self!=value.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/data/IteratorSpec