On this page
tf.math.multiply
Returns an element-wise x * y.
tf.math.multiply(
    x, y, name=None
)
  For example:
x = tf.constant(([1, 2, 3, 4]))
tf.math.multiply(x, x)
<tf.Tensor: shape=(4,), dtype=..., numpy=array([ 1,  4,  9, 16], dtype=int32)>
  Since tf.math.multiply will convert its arguments to Tensors, you can also pass in non-Tensor arguments:
tf.math.multiply(7,6)
<tf.Tensor: shape=(), dtype=int32, numpy=42>
  If x.shape is not thes same as y.shape, they will be broadcast to a compatible shape. (More about broadcasting here.)
For example:
x = tf.ones([1, 2]);
y = tf.ones([2, 1]);
x * y  # Taking advantage of operator overriding
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
     [1., 1.]], dtype=float32)>
  | Args | |
|---|---|
x | 
      A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128. | 
     
y | 
      A Tensor. Must have the same type as x. | 
     
name | 
      A name for the operation (optional). | 
| Returns | 
|---|
A Tensor. Has the same type as x.
| Raises | |
|---|---|
       
  | 
     
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
 https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/math/multiply