On this page
numpy.ma.masked_object
- numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]
- 
    Mask the array xwhere the data are exactly equal to value.This function is similar to masked_values, but only suitable for object arrays: for floating point, usemasked_valuesinstead.- Parameters
- 
      - xarray_like
- 
        Array to mask 
- valueobject
- 
        Comparison value 
- copy{True, False}, optional
- 
        Whether to return a copy of x.
- shrink{True, False}, optional
- 
        Whether to collapse a mask full of False to nomask 
 
- Returns
- 
      - resultMaskedArray
- 
        The result of masking xwhere equal tovalue.
 
 See also - masked_where
- 
       Mask where a condition is met. 
- masked_equal
- 
       Mask where equal to a given value (integers). 
- masked_values
- 
       Mask using floating point equality. 
 Examples>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)Note that maskis set tonomaskif possible.>>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)
© 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.19/reference/generated/numpy.ma.masked_object.html