On this page
Enum std::result::Result
pub enum Result<T, E> {
Ok(T),
Err(E),
}
Result
is a type that represents either success (Ok
) or failure (Err
).
See the module documentation for details.
Variants
Ok(T)
Contains the success value
Err(E)
Contains the error value
Implementations
impl<T, E> Result<T, E>
pub const fn is_ok(&self) -> bool
Returns true
if the result is Ok
.
Examples
let x: Result<i32, &str> = Ok(-3);
assert_eq!(x.is_ok(), true);
let x: Result<i32, &str> = Err("Some error message");
assert_eq!(x.is_ok(), false);
pub fn is_ok_and(self, f: impl FnOnce(T) -> bool) -> bool
Returns true
if the result is Ok
and the value inside of it matches a predicate.
Examples
let x: Result<u32, &str> = Ok(2);
assert_eq!(x.is_ok_and(|x| x > 1), true);
let x: Result<u32, &str> = Ok(0);
assert_eq!(x.is_ok_and(|x| x > 1), false);
let x: Result<u32, &str> = Err("hey");
assert_eq!(x.is_ok_and(|x| x > 1), false);
pub const fn is_err(&self) -> bool
Returns true
if the result is Err
.
Examples
let x: Result<i32, &str> = Ok(-3);
assert_eq!(x.is_err(), false);
let x: Result<i32, &str> = Err("Some error message");
assert_eq!(x.is_err(), true);
pub fn is_err_and(self, f: impl FnOnce(E) -> bool) -> bool
Returns true
if the result is Err
and the value inside of it matches a predicate.
Examples
use std::io::{Error, ErrorKind};
let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
let x: Result<u32, Error> = Ok(123);
assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
pub fn ok(self) -> Option<T>
Converts from Result<T, E>
to Option<T>
.
Converts self
into an Option<T>
, consuming self
, and discarding the error, if any.
Examples
let x: Result<u32, &str> = Ok(2);
assert_eq!(x.ok(), Some(2));
let x: Result<u32, &str> = Err("Nothing here");
assert_eq!(x.ok(), None);
pub fn err(self) -> Option<E>
Converts from Result<T, E>
to Option<E>
.
Converts self
into an Option<E>
, consuming self
, and discarding the success value, if any.
Examples
let x: Result<u32, &str> = Ok(2);
assert_eq!(x.err(), None);
let x: Result<u32, &str> = Err("Nothing here");
assert_eq!(x.err(), Some("Nothing here"));
pub const fn as_ref(&self) -> Result<&T, &E>
Converts from &Result<T, E>
to Result<&T, &E>
.
Produces a new Result
, containing a reference into the original, leaving the original in place.
Examples
let x: Result<u32, &str> = Ok(2);
assert_eq!(x.as_ref(), Ok(&2));
let x: Result<u32, &str> = Err("Error");
assert_eq!(x.as_ref(), Err(&"Error"));
pub fn as_mut(&mut self) -> Result<&mut T, &mut E>
Converts from &mut Result<T, E>
to Result<&mut T, &mut E>
.
Examples
fn mutate(r: &mut Result<i32, i32>) {
match r.as_mut() {
Ok(v) => *v = 42,
Err(e) => *e = 0,
}
}
let mut x: Result<i32, i32> = Ok(2);
mutate(&mut x);
assert_eq!(x.unwrap(), 42);
let mut x: Result<i32, i32> = Err(13);
mutate(&mut x);
assert_eq!(x.unwrap_err(), 0);
pub fn map<U, F>(self, op: F) -> Result<U, E>
where
F: FnOnce(T) -> U,
Maps a Result<T, E>
to Result<U, E>
by applying a function to a contained Ok
value, leaving an Err
value untouched.
This function can be used to compose the results of two functions.
Examples
Print the numbers on each line of a string multiplied by two.
let line = "1\n2\n3\n4\n";
for num in line.lines() {
match num.parse::<i32>().map(|i| i * 2) {
Ok(n) => println!("{n}"),
Err(..) => {}
}
}
pub fn map_or<U, F>(self, default: U, f: F) -> U
where
F: FnOnce(T) -> U,
Returns the provided default (if Err
), or applies a function to the contained value (if Ok
).
Arguments passed to map_or
are eagerly evaluated; if you are passing the result of a function call, it is recommended to use map_or_else
, which is lazily evaluated.
Examples
let x: Result<_, &str> = Ok("foo");
assert_eq!(x.map_or(42, |v| v.len()), 3);
let x: Result<&str, _> = Err("bar");
assert_eq!(x.map_or(42, |v| v.len()), 42);
pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
where
D: FnOnce(E) -> U,
F: FnOnce(T) -> U,
Maps a Result<T, E>
to U
by applying fallback function default
to a contained Err
value, or function f
to a contained Ok
value.
This function can be used to unpack a successful result while handling an error.
Examples
let k = 21;
let x : Result<_, &str> = Ok("foo");
assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
let x : Result<&str, _> = Err("bar");
assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
pub fn map_err<F, O>(self, op: O) -> Result<T, F>
where
O: FnOnce(E) -> F,
Maps a Result<T, E>
to Result<T, F>
by applying a function to a contained Err
value, leaving an Ok
value untouched.
This function can be used to pass through a successful result while handling an error.
Examples
fn stringify(x: u32) -> String { format!("error code: {x}") }
let x: Result<u32, u32> = Ok(2);
assert_eq!(x.map_err(stringify), Ok(2));
let x: Result<u32, u32> = Err(13);
assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
pub fn inspect<F>(self, f: F) -> Result<T, E>
where
F: FnOnce(&T),
result_option_inspect
#91345)
Calls the provided closure with a reference to the contained value (if Ok
).
Examples
#![feature(result_option_inspect)]
let x: u8 = "4"
.parse::<u8>()
.inspect(|x| println!("original: {x}"))
.map(|x| x.pow(3))
.expect("failed to parse number");
pub fn inspect_err<F>(self, f: F) -> Result<T, E>
where
F: FnOnce(&E),
result_option_inspect
#91345)
Calls the provided closure with a reference to the contained error (if Err
).
Examples
#![feature(result_option_inspect)]
use std::{fs, io};
fn read() -> io::Result<String> {
fs::read_to_string("address.txt")
.inspect_err(|e| eprintln!("failed to read file: {e}"))
}
pub fn as_deref(&self) -> Result<&<T as Deref>::Target, &E>
where
T: Deref,
Converts from Result<T, E>
(or &Result<T, E>
) to Result<&<T as Deref>::Target, &E>
.
Coerces the Ok
variant of the original Result
via Deref
and returns the new Result
.
Examples
let x: Result<String, u32> = Ok("hello".to_string());
let y: Result<&str, &u32> = Ok("hello");
assert_eq!(x.as_deref(), y);
let x: Result<String, u32> = Err(42);
let y: Result<&str, &u32> = Err(&42);
assert_eq!(x.as_deref(), y);
pub fn as_deref_mut(&mut self) -> Result<&mut <T as Deref>::Target, &mut E>
where
T: DerefMut,
Converts from Result<T, E>
(or &mut Result<T, E>
) to Result<&mut <T as DerefMut>::Target, &mut E>
.
Coerces the Ok
variant of the original Result
via DerefMut
and returns the new Result
.
Examples
let mut s = "HELLO".to_string();
let mut x: Result<String, u32> = Ok("hello".to_string());
let y: Result<&mut str, &mut u32> = Ok(&mut s);
assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
let mut i = 42;
let mut x: Result<String, u32> = Err(42);
let y: Result<&mut str, &mut u32> = Err(&mut i);
assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
pub fn iter(&self) -> Iter<'_, T> ⓘ
Returns an iterator over the possibly contained value.
The iterator yields one value if the result is Result::Ok
, otherwise none.
Examples
let x: Result<u32, &str> = Ok(7);
assert_eq!(x.iter().next(), Some(&7));
let x: Result<u32, &str> = Err("nothing!");
assert_eq!(x.iter().next(), None);
pub fn iter_mut(&mut self) -> IterMut<'_, T> ⓘ
Returns a mutable iterator over the possibly contained value.
The iterator yields one value if the result is Result::Ok
, otherwise none.
Examples
let mut x: Result<u32, &str> = Ok(7);
match x.iter_mut().next() {
Some(v) => *v = 40,
None => {},
}
assert_eq!(x, Ok(40));
let mut x: Result<u32, &str> = Err("nothing!");
assert_eq!(x.iter_mut().next(), None);
pub fn expect(self, msg: &str) -> T
where
E: Debug,
Returns the contained Ok
value, consuming the self
value.
Because this function may panic, its use is generally discouraged. Instead, prefer to use pattern matching and handle the Err
case explicitly, or call unwrap_or
, unwrap_or_else
, or unwrap_or_default
.
Panics
Panics if the value is an Err
, with a panic message including the passed message, and the content of the Err
.
Examples
let x: Result<u32, &str> = Err("emergency failure");
x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
Recommended Message Style
We recommend that expect
messages are used to describe the reason you expect the Result
should be Ok
.
let path = std::env::var("IMPORTANT_PATH")
.expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
Hint: If you’re having trouble remembering how to phrase expect error messages remember to focus on the word “should” as in “env variable should be set by blah” or “the given binary should be available and executable by the current user”.
For more detail on expect message styles and the reasoning behind our recommendation please refer to the section on “Common Message Styles” in the std::error
module docs.
pub fn unwrap(self) -> T
where
E: Debug,
Returns the contained Ok
value, consuming the self
value.
Because this function may panic, its use is generally discouraged. Instead, prefer to use pattern matching and handle the Err
case explicitly, or call unwrap_or
, unwrap_or_else
, or unwrap_or_default
.
Panics
Panics if the value is an Err
, with a panic message provided by the Err
’s value.
Examples
Basic usage:
let x: Result<u32, &str> = Ok(2);
assert_eq!(x.unwrap(), 2);
let x: Result<u32, &str> = Err("emergency failure");
x.unwrap(); // panics with `emergency failure`
pub fn unwrap_or_default(self) -> T
where
T: Default,
Returns the contained Ok
value or a default
Consumes the self
argument then, if Ok
, returns the contained value, otherwise if Err
, returns the default value for that type.
Examples
Converts a string to an integer, turning poorly-formed strings into 0 (the default value for integers). parse
converts a string to any other type that implements FromStr
, returning an Err
on error.
let good_year_from_input = "1909";
let bad_year_from_input = "190blarg";
let good_year = good_year_from_input.parse().unwrap_or_default();
let bad_year = bad_year_from_input.parse().unwrap_or_default();
assert_eq!(1909, good_year);
assert_eq!(0, bad_year);
pub fn expect_err(self, msg: &str) -> E
where
T: Debug,
Returns the contained Err
value, consuming the self
value.
Panics
Panics if the value is an Ok
, with a panic message including the passed message, and the content of the Ok
.
Examples
let x: Result<u32, &str> = Ok(10);
x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
pub fn unwrap_err(self) -> E
where
T: Debug,
Returns the contained Err
value, consuming the self
value.
Panics
Panics if the value is an Ok
, with a custom panic message provided by the Ok
’s value.
Examples
let x: Result<u32, &str> = Ok(2);
x.unwrap_err(); // panics with `2`
let x: Result<u32, &str> = Err("emergency failure");
assert_eq!(x.unwrap_err(), "emergency failure");
pub fn into_ok(self) -> T
where
E: Into<!>,
unwrap_infallible
#61695)
Returns the contained Ok
value, but never panics.
Unlike unwrap
, this method is known to never panic on the result types it is implemented for. Therefore, it can be used instead of unwrap
as a maintainability safeguard that will fail to compile if the error type of the Result
is later changed to an error that can actually occur.
Examples
fn only_good_news() -> Result<String, !> {
Ok("this is fine".into())
}
let s: String = only_good_news().into_ok();
println!("{s}");
pub fn into_err(self) -> E
where
T: Into<!>,
unwrap_infallible
#61695)
Returns the contained Err
value, but never panics.
Unlike unwrap_err
, this method is known to never panic on the result types it is implemented for. Therefore, it can be used instead of unwrap_err
as a maintainability safeguard that will fail to compile if the ok type of the Result
is later changed to a type that can actually occur.
Examples
fn only_bad_news() -> Result<!, String> {
Err("Oops, it failed".into())
}
let error: String = only_bad_news().into_err();
println!("{error}");
pub fn and<U>(self, res: Result<U, E>) -> Result<U, E>
Returns res
if the result is Ok
, otherwise returns the Err
value of self
.
Arguments passed to and
are eagerly evaluated; if you are passing the result of a function call, it is recommended to use and_then
, which is lazily evaluated.
Examples
let x: Result<u32, &str> = Ok(2);
let y: Result<&str, &str> = Err("late error");
assert_eq!(x.and(y), Err("late error"));
let x: Result<u32, &str> = Err("early error");
let y: Result<&str, &str> = Ok("foo");
assert_eq!(x.and(y), Err("early error"));
let x: Result<u32, &str> = Err("not a 2");
let y: Result<&str, &str> = Err("late error");
assert_eq!(x.and(y), Err("not a 2"));
let x: Result<u32, &str> = Ok(2);
let y: Result<&str, &str> = Ok("different result type");
assert_eq!(x.and(y), Ok("different result type"));
pub fn and_then<U, F>(self, op: F) -> Result<U, E>
where
F: FnOnce(T) -> Result<U, E>,
Calls op
if the result is Ok
, otherwise returns the Err
value of self
.
This function can be used for control flow based on Result
values.
Examples
fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
}
assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
Often used to chain fallible operations that may return Err
.
use std::{io::ErrorKind, path::Path};
// Note: on Windows "/" maps to "C:\"
let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
assert!(root_modified_time.is_ok());
let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
assert!(should_fail.is_err());
assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
pub fn or<F>(self, res: Result<T, F>) -> Result<T, F>
Returns res
if the result is Err
, otherwise returns the Ok
value of self
.
Arguments passed to or
are eagerly evaluated; if you are passing the result of a function call, it is recommended to use or_else
, which is lazily evaluated.
Examples
let x: Result<u32, &str> = Ok(2);
let y: Result<u32, &str> = Err("late error");
assert_eq!(x.or(y), Ok(2));
let x: Result<u32, &str> = Err("early error");
let y: Result<u32, &str> = Ok(2);
assert_eq!(x.or(y), Ok(2));
let x: Result<u32, &str> = Err("not a 2");
let y: Result<u32, &str> = Err("late error");
assert_eq!(x.or(y), Err("late error"));
let x: Result<u32, &str> = Ok(2);
let y: Result<u32, &str> = Ok(100);
assert_eq!(x.or(y), Ok(2));
pub fn or_else<F, O>(self, op: O) -> Result<T, F>
where
O: FnOnce(E) -> Result<T, F>,
Calls op
if the result is Err
, otherwise returns the Ok
value of self
.
This function can be used for control flow based on result values.
Examples
fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
fn err(x: u32) -> Result<u32, u32> { Err(x) }
assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
pub fn unwrap_or(self, default: T) -> T
Returns the contained Ok
value or a provided default.
Arguments passed to unwrap_or
are eagerly evaluated; if you are passing the result of a function call, it is recommended to use unwrap_or_else
, which is lazily evaluated.
Examples
let default = 2;
let x: Result<u32, &str> = Ok(9);
assert_eq!(x.unwrap_or(default), 9);
let x: Result<u32, &str> = Err("error");
assert_eq!(x.unwrap_or(default), default);
pub fn unwrap_or_else<F>(self, op: F) -> T
where
F: FnOnce(E) -> T,
Returns the contained Ok
value or computes it from a closure.
Examples
fn count(x: &str) -> usize { x.len() }
assert_eq!(Ok(2).unwrap_or_else(count), 2);
assert_eq!(Err("foo").unwrap_or_else(count), 3);
pub unsafe fn unwrap_unchecked(self) -> T
Returns the contained Ok
value, consuming the self
value, without checking that the value is not an Err
.
Safety
Calling this method on an Err
is undefined behavior.
Examples
let x: Result<u32, &str> = Ok(2);
assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
let x: Result<u32, &str> = Err("emergency failure");
unsafe { x.unwrap_unchecked(); } // Undefined behavior!
pub unsafe fn unwrap_err_unchecked(self) -> E
Returns the contained Err
value, consuming the self
value, without checking that the value is not an Ok
.
Safety
Calling this method on an Ok
is undefined behavior.
Examples
let x: Result<u32, &str> = Ok(2);
unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
let x: Result<u32, &str> = Err("emergency failure");
assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
impl<T, E> Result<&T, E>
pub fn copied(self) -> Result<T, E>
where
T: Copy,
Maps a Result<&T, E>
to a Result<T, E>
by copying the contents of the Ok
part.
Examples
let val = 12;
let x: Result<&i32, i32> = Ok(&val);
assert_eq!(x, Ok(&12));
let copied = x.copied();
assert_eq!(copied, Ok(12));
pub fn cloned(self) -> Result<T, E>
where
T: Clone,
Maps a Result<&T, E>
to a Result<T, E>
by cloning the contents of the Ok
part.
Examples
let val = 12;
let x: Result<&i32, i32> = Ok(&val);
assert_eq!(x, Ok(&12));
let cloned = x.cloned();
assert_eq!(cloned, Ok(12));
impl<T, E> Result<&mut T, E>
pub fn copied(self) -> Result<T, E>
where
T: Copy,
Maps a Result<&mut T, E>
to a Result<T, E>
by copying the contents of the Ok
part.
Examples
let mut val = 12;
let x: Result<&mut i32, i32> = Ok(&mut val);
assert_eq!(x, Ok(&mut 12));
let copied = x.copied();
assert_eq!(copied, Ok(12));
pub fn cloned(self) -> Result<T, E>
where
T: Clone,
Maps a Result<&mut T, E>
to a Result<T, E>
by cloning the contents of the Ok
part.
Examples
let mut val = 12;
let x: Result<&mut i32, i32> = Ok(&mut val);
assert_eq!(x, Ok(&mut 12));
let cloned = x.cloned();
assert_eq!(cloned, Ok(12));
impl<T, E> Result<Option<T>, E>
pub fn transpose(self) -> Option<Result<T, E>>
Transposes a Result
of an Option
into an Option
of a Result
.
Ok(None)
will be mapped to None
. Ok(Some(_))
and Err(_)
will be mapped to Some(Ok(_))
and Some(Err(_))
.
Examples
#[derive(Debug, Eq, PartialEq)]
struct SomeErr;
let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
assert_eq!(x.transpose(), y);
impl<T, E> Result<Result<T, E>, E>
pub fn flatten(self) -> Result<T, E>
result_flattening
#70142)
Converts from Result<Result<T, E>, E>
to Result<T, E>
Examples
#![feature(result_flattening)]
let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
assert_eq!(Ok("hello"), x.flatten());
let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
assert_eq!(Err(6), x.flatten());
let x: Result<Result<&'static str, u32>, u32> = Err(6);
assert_eq!(Err(6), x.flatten());
Flattening only removes one level of nesting at a time:
#![feature(result_flattening)]
let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
assert_eq!(Ok(Ok("hello")), x.flatten());
assert_eq!(Ok("hello"), x.flatten().flatten());
Trait Implementations
impl<T, E> Clone for Result<T, E>
where
T: Clone,
E: Clone,
fn clone(&self) -> Result<T, E>
fn clone_from(&mut self, source: &Result<T, E>)
source
. Read more
impl<T, E> Debug for Result<T, E>
where
T: Debug,
E: Debug,
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>
impl<A, E, V> FromIterator<Result<A, E>> for Result<V, E>
where
V: FromIterator<A>,
fn from_iter<I>(iter: I) -> Result<V, E>
where
I: IntoIterator<Item = Result<A, E>>,
Takes each element in the Iterator
: if it is an Err
, no further elements are taken, and the Err
is returned. Should no Err
occur, a container with the values of each Result
is returned.
Here is an example which increments every integer in a vector, checking for overflow:
let v = vec![1, 2];
let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
x.checked_add(1).ok_or("Overflow!")
).collect();
assert_eq!(res, Ok(vec![2, 3]));
Here is another example that tries to subtract one from another list of integers, this time checking for underflow:
let v = vec![1, 2, 0];
let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
x.checked_sub(1).ok_or("Underflow!")
).collect();
assert_eq!(res, Err("Underflow!"));
Here is a variation on the previous example, showing that no further elements are taken from iter
after the first Err
.
let v = vec![3, 2, 1, 10];
let mut shared = 0;
let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
shared += x;
x.checked_sub(2).ok_or("Underflow!")
}).collect();
assert_eq!(res, Err("Underflow!"));
assert_eq!(shared, 6);
Since the third element caused an underflow, no further elements were taken, so the final value of shared
is 6 (= 3 + 2 + 1
), not 16.
impl<T, E, F> FromResidual<Result<Infallible, E>> for Poll<Option<Result<T, F>>>
where
F: From<E>,
fn from_residual(x: Result<Infallible, E>) -> Poll<Option<Result<T, F>>>
try_trait_v2
#84277)
Residual
type. Read more
impl<T, E, F> FromResidual<Result<Infallible, E>> for Poll<Result<T, F>>
where
F: From<E>,
fn from_residual(x: Result<Infallible, E>) -> Poll<Result<T, F>>
try_trait_v2
#84277)
Residual
type. Read more
impl<T, E, F> FromResidual<Result<Infallible, E>> for Result<T, F>
where
F: From<E>,
fn from_residual(residual: Result<Infallible, E>) -> Result<T, F>
try_trait_v2
#84277)
Residual
type. Read more
impl<T, E, F> FromResidual<Yeet<E>> for Result<T, F>
where
F: From<E>,
fn from_residual(_: Yeet<E>) -> Result<T, F>
try_trait_v2
#84277)
Residual
type. Read more
impl<T, E> Hash for Result<T, E>
where
T: Hash,
E: Hash,
fn hash<__H>(&self, state: &mut __H)
where
__H: Hasher,
fn hash_slice<H>(data: &[Self], state: &mut H)
where
H: Hasher,
Self: Sized,
impl<'a, T, E> IntoIterator for &'a Result<T, E>
type Item = &'a T
type IntoIter = Iter<'a, T>
fn into_iter(self) -> Iter<'a, T> ⓘ
impl<'a, T, E> IntoIterator for &'a mut Result<T, E>
type Item = &'a mut T
type IntoIter = IterMut<'a, T>
fn into_iter(self) -> IterMut<'a, T> ⓘ
impl<T, E> IntoIterator for Result<T, E>
fn into_iter(self) -> IntoIter<T> ⓘ
Returns a consuming iterator over the possibly contained value.
The iterator yields one value if the result is Result::Ok
, otherwise none.
Examples
let x: Result<u32, &str> = Ok(5);
let v: Vec<u32> = x.into_iter().collect();
assert_eq!(v, [5]);
let x: Result<u32, &str> = Err("nothing!");
let v: Vec<u32> = x.into_iter().collect();
assert_eq!(v, []);
type Item = T
type IntoIter = IntoIter<T>
impl<T, E> Ord for Result<T, E>
where
T: Ord,
E: Ord,
fn cmp(&self, other: &Result<T, E>) -> Ordering
fn max(self, other: Self) -> Self
where
Self: Sized,
fn min(self, other: Self) -> Self
where
Self: Sized,
fn clamp(self, min: Self, max: Self) -> Self
where
Self: Sized + PartialOrd,
impl<T, E> PartialEq for Result<T, E>
where
T: PartialEq,
E: PartialEq,
fn eq(&self, other: &Result<T, E>) -> bool
self
and other
values to be equal, and is used by ==
.
fn ne(&self, other: &Rhs) -> bool
!=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
impl<T, E> PartialOrd for Result<T, E>
where
T: PartialOrd,
E: PartialOrd,
fn partial_cmp(&self, other: &Result<T, E>) -> Option<Ordering>
fn lt(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read more
fn gt(&self, other: &Rhs) -> bool
fn ge(&self, other: &Rhs) -> bool
self
and other
) and is used by the >=
operator. Read more
impl<T, U, E> Product<Result<U, E>> for Result<T, E>
where
T: Product<U>,
fn product<I>(iter: I) -> Result<T, E>
where
I: Iterator<Item = Result<U, E>>,
Takes each element in the Iterator
: if it is an Err
, no further elements are taken, and the Err
is returned. Should no Err
occur, the product of all elements is returned.
Examples
This multiplies each number in a vector of strings, if a string could not be parsed the operation returns Err
:
let nums = vec!["5", "10", "1", "2"];
let total: Result<usize, _> = nums.iter().map(|w| w.parse::<usize>()).product();
assert_eq!(total, Ok(100));
let nums = vec!["5", "10", "one", "2"];
let total: Result<usize, _> = nums.iter().map(|w| w.parse::<usize>()).product();
assert!(total.is_err());
impl<T, E> Residual<T> for Result<Infallible, E>
type TryType = Result<T, E>
try_trait_v2_residual
#91285)
impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
where
T: Sum<U>,
fn sum<I>(iter: I) -> Result<T, E>
where
I: Iterator<Item = Result<U, E>>,
Takes each element in the Iterator
: if it is an Err
, no further elements are taken, and the Err
is returned. Should no Err
occur, the sum of all elements is returned.
Examples
This sums up every integer in a vector, rejecting the sum if a negative element is encountered:
let f = |&x: &i32| if x < 0 { Err("Negative element found") } else { Ok(x) };
let v = vec![1, 2];
let res: Result<i32, _> = v.iter().map(f).sum();
assert_eq!(res, Ok(3));
let v = vec![1, -2];
let res: Result<i32, _> = v.iter().map(f).sum();
assert_eq!(res, Err("Negative element found"));
impl<T: Termination, E: Debug> Termination for Result<T, E>
fn report(self) -> ExitCode
impl<T, E> Try for Result<T, E>
type Output = T
try_trait_v2
#84277)
?
when not short-circuiting.
type Residual = Result<Infallible, E>
try_trait_v2
#84277)
FromResidual::from_residual
as part of ?
when short-circuiting. Read more
fn from_output(output: <Result<T, E> as Try>::Output) -> Result<T, E>
try_trait_v2
#84277)
Output
type. Read more
fn branch(
self
) -> ControlFlow<<Result<T, E> as Try>::Residual, <Result<T, E> as Try>::Output>
try_trait_v2
#84277)
?
to decide whether the operator should produce a value (because this returned ControlFlow::Continue
) or propagate a value back to the caller (because this returned ControlFlow::Break
). Read more
impl<T, E> Copy for Result<T, E>
where
T: Copy,
E: Copy,
impl<T, E> Eq for Result<T, E>
where
T: Eq,
E: Eq,
impl<T, E> StructuralEq for Result<T, E>
impl<T, E> StructuralPartialEq for Result<T, E>
Auto Trait Implementations
impl<T, E> RefUnwindSafe for Result<T, E>
where
E: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, E> Send for Result<T, E>
where
E: Send,
T: Send,
impl<T, E> Sync for Result<T, E>
where
E: Sync,
T: Sync,
impl<T, E> Unpin for Result<T, E>
where
E: Unpin,
T: Unpin,
impl<T, E> UnwindSafe for Result<T, E>
where
E: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
impl<T> Any for T
where
T: 'static + ?Sized,
impl<T> Borrow<T> for T
where
T: ?Sized,
impl<T> BorrowMut<T> for T
where
T: ?Sized,
impl<T> From<T> for T
fn from(t: T) -> T
Returns the argument unchanged.
impl<T, U> Into<U> for T
where
U: From<T>,
fn into(self) -> U
Calls U::from(self)
.
That is, this conversion is whatever the implementation of From<T> for U
chooses to do.
impl<T> ToOwned for T
where
T: Clone,
type Owned = T
fn to_owned(&self) -> T
fn clone_into(&self, target: &mut T)
impl<T, U> TryFrom<U> for T
where
U: Into<T>,
type Error = Infallible
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
impl<T, U> TryInto<U> for T
where
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/result/enum.Result.html