pytorch / 1.8.0 / generated / torch.nn.maxpool3d.html /

MaxPool3d

class torch.nn.MaxPool3d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False) [source]

Applies a 3D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ( N , C , D , H , W ) (N, C, D, H, W) , output ( N , C , D o u t , H o u t , W o u t ) (N, C, D_{out}, H_{out}, W_{out}) and kernel_size ( k D , k H , k W ) (kD, kH, kW) can be precisely described as:

out ( N i , C j , d , h , w ) = max k = 0 , , k D 1 max m = 0 , , k H 1 max n = 0 , , k W 1 input ( N i , C j , stride[0] × d + k , stride[1] × h + m , stride[2] × w + n ) \begin{aligned} \text{out}(N_i, C_j, d, h, w) ={} & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times d + k, \text{stride[1]} \times h + m, \text{stride[2]} \times w + n) \end{aligned}

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding, dilation can either be:

  • a single int – in which case the same value is used for the depth, height and width dimension
  • a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Parameters
  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on all three sides
  • dilation – a parameter that controls the stride of elements in the window
  • return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool3d later
  • ceil_mode – when True, will use ceil instead of floor to compute the output shape
Shape:
  • Input: ( N , C , D i n , H i n , W i n ) (N, C, D_{in}, H_{in}, W_{in})
  • Output: ( N , C , D o u t , H o u t , W o u t ) (N, C, D_{out}, H_{out}, W_{out}) , where

    D o u t = D i n + 2 × padding [ 0 ] dilation [ 0 ] × ( kernel_size [ 0 ] 1 ) 1 stride [ 0 ] + 1 D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
    H o u t = H i n + 2 × padding [ 1 ] dilation [ 1 ] × ( kernel_size [ 1 ] 1 ) 1 stride [ 1 ] + 1 H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
    W o u t = W i n + 2 × padding [ 2 ] dilation [ 2 ] × ( kernel_size [ 2 ] 1 ) 1 stride [ 2 ] + 1 W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor

Examples:

>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50,44, 31)
>>> output = m(input)

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.MaxPool3d.html